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Abstract

An interface crack or delamination may often branch out of the interface in a laminated composite due to thermal
stresses developing around the delamination/crack tip when the media is exposed to heat flow induced by environmental
events such as a sudden short-duration fire. In this paper, the thermo-elastic problem of interface crack branching in dis-
similar anisotropic bi-media is studied by using the theory of Stroh’s dislocation formalism, extended to thermo-elasticity
in matrix notation. Based on the complex variable method and the analytical continuation principle, the thermo-elastic
interface crack/delamination problem is examined and a general solution in compact form is derived for dissimilar aniso-
tropic bi-media. A set of Green’s functions is proposed for the dislocations (conventional dislocation and thermal dis-
location/heat vortex) in anisotropic bi-media. These functions may be more suitable than those which have appeared
in the literature on addressing thermo-elastic interface crack branching in dissimilar anisotropic bi-materials. Using
the contour integral method, a closed form solution to the interaction between the dislocations and the interface crack
is obtained. Within the scope of linear fracture mechanics, the thermo-elastic problem of interface crack branching is
then solved by modelling the branched portion as a continuous distribution of dislocations. The influence of thermal
loading and thermal properties on the branching behavior is examined, and criteria for predicting interface crack branch-
ing are suggested, based on the extensive numerical results from the study of various cases.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Interface cracking may occur along the interface of two dissimilar media and could be one of the cata-
strophic failure modes for these materials. A common form of interface cracking is a delamination or a
debond in laminate composite or sandwich structures. Williams (1959) employed an eigenfunction expan-
sion method to study the stress distribution around the interface crack tip for a bi-material media consisting
of two dissimilar isotropic infinite half planes and obtained a stress singularity in the form 2, i.e. a solu-
tion of oscillating character. Since this pioneering work, many researchers contributed lots of effort and
many useful studies have been published both for isotropic and anisotropic bi-material media. In particular,
by using the Muskhelishvili’s (1953) formalism, Erdogan (1963) obtained in 1963 a solution for several
cracks aligned along the interface of a dissimilar isotropic bi-material media. England (1965) reconsidered
this problem and quantitatively addressed the oscillatory character of an interface crack by focusing on the
range of limits in which possible overlapping may occur. Rice and Sih (1965) studied in 1965 this problem
by combining Muskhelishvili’s (1953) complex-variable method with an eigenfunction expansion and for-
mulated an expression for the stress intensity factors, as well as proposed a possible criterion for the inter-
face crack growth. Suo and Hutchinson (1990) used in 1990 a dislocation distribution technique and
supposition method to study a semi-infinite interface crack between the interface of two isotropic elastic
layers. Extensive data were given in Suo and Hutchinson (1990) for practical application.

Clements (1971) started the investigation for dissimilar anisotropic bi-material media by using Stroh’s
sextic formalism (1958), then Willis (1971) using the Fourier transform method reconsidered this problem.
Later on, Ting (1986) studied the asymptotic property of the interface crack in dissimilar anisotropic media
by using an assumed stress function form and Qu and Li (1991) addressed this problem by applying the
continuous interface dislocation distribution technique with real matrix notation.

It has been increasingly realized that the study of interface cracking can have significant practical interest
due to the recently increasing use of laminated and sandwich composites in aerospace and marine struc-
tures, and the use of thin film structures in electronic packaging and computer components such as circuit
board, etc. All these structures or devices often work in hostile environment where local temperature gra-
dient fields are often experienced. A practical case of rapid built-up of thermal field gradients is when a
loaded structure is exposed to fire on one side.

Studies on the influence of thermal loading on interface cracks can be traced from the 1960s. Several
papers have been published on this subject such as Barber and Comninou (1982, 1983); Martin-Moran
et al. (1983) and Chao and Shen (1993), etc.; these studies were, however, for isotropic bi-media; Atkinsion
and Clements (1983) began to address the thermo-elastic interface crack problem for anisotropic bi-mate-
rial media consisting of two dissimilar infinite half spaces. Later on, Hwu (1992) reconsidered the similar
thermo-elastic interface crack problem in some details by employing the identities developed by Ting
(1988). Choi and Thangjitham (1993) studied the interlaminar crack in laminated anisotropic composites
by the Fourier integral transform technique; Herrmann and Loboda (2001) extended the Comninou
(1977) contact model for interface cracks of dissimilar anisotropic bi-material media.

In contrast to the interface crack/delamination problems, the thermo-elastic interface crack branching
problem in dissimilar bi-materials has received little attention. Our literature search revealed no analytical
work on this problem. But, an interface delamination may easily branch out of the interface due to severe
stress concentrations around the crack tip, especially the severe thermal stress concentrations when the
structure is exposed to heat flow with or without mechanical loading. Therefore, the thermo-elastic inter-
face crack branching phenomenon for dissimilar anisotropic bi-material media needs further investigations.
The purpose of this paper is to analyze this phenomenon in terms of the dislocation theory (Eshelby et al.,
1953).

The work presented in this paper is organized in the following way. In terms of the extended Stroh’s
(1958) anisotropic elasticity formulation (summarized in Appendix A), a general solution for a thermo-elas-
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tic interface delamination is first formulated by using the analytical continuation principle of complex func-
tions. The procedure is similar to the one in Li and Kardomateas (2005).

Then, expressions for the thermal dislocation [thermal vortex, Dundurs and Comninou (1979)] and the
conventional (or mechanical) dislocation, located in either of the bi-material components, are presented. To
satisfy the continuation condition along the interface, a term accounting for the mixed thermal and
mechanical interaction is introduced into these expressions. Then, a closed form solution is derived for
the thermo-elastic interaction between the interface crack and the dislocation. Sub-sequentially, the
branched crack is modelled by a continuous distribution of dislocations and a set of coupled singular int-
egral equations in terms of the heat vortex density and the mechanical dislocation density is obtained. Sub-
sequently, the strain energy release rate for the crack-kinked body is calculated and by maximizing it, the
angle in favor of crack branching into one of the bi-material media can be found. Finally, several cases are
numerically simulated to illustrate the thermal loading influence on the onset of interface crack branching
and some important conclusions are drawn with regard to the criteria for the prediction of thermo-elastic
crack/delamination branching in dissimilar anisotropic bi-material media.

2. A general solution to thermo-elastic interface crack in bi-media

The thermo-anisotropic elasticity in Stroh’s formulation (1958) is summarized in Appendix A. In this
section, the derivation of a general solution to the interface crack with thermal loading will be given by
employing the complex variables method and the analytic continuity principle. A closed form solution
to constant applied loading also will be given in this section.

2.1. A solution to the interface crack of anisotropic medium under thermo-mechanically combined loading

Let the medium I occupy the upper half space (denoted by L) and the medium II occupy the lower half
space (denoted by R) (Fig. 1), then from Eq. (100) and (107) (Appendix A) one can have following expres-
sion for the bi-media:

u' = A (f’l(za) JFK1 (,25](21) + G XI(ZI) JFEl Xl(zr)7
@' = Bi¢y(z,) + Biy(z,) + Diya(z:) + Diy(z2), (1)
T' = 7i(z0) + 1i(z0),  hy = —iki 7 (z2) + ik 1] (22),

rrrrrrrtrtitlie

Fig. 1. A thermo-elastic interface crack between dissimilar anisotropic bi-media.
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where u', ¢!, T' are displacement, stress function and temperature fields for z, € L
u' = Au¢y(z.) + Audu(z,) + Cuxn(z:) + Cuyn(z),

(P” = BIIQ')H(Za) + EII¢H (Za) + Dy (Zr) + ﬁIIXH (21)7 (2)
T = 7 (z) + (=), kY = =ik (z0) + kugd (z0),

where u'"!, ¢", 7" are displacement, stress function and temperature fields for z, € R.

For the convenience of writing, the symbols ‘T" and ‘II’, denoting the quantities to medium ‘L’ and ‘R’,
respectively, may be put as subscripts or subscripts. The interface crack is assumed to be located in the re-
gion a <x; <b, —oo < x3 < oo of the plane x, = 0. A heat flux hy and o3 = p; is applied at infinity (Fig. 1).

By the superposition principle and making use of Eq. (106), in Appendix A, the boundary conditions for
this problem can be written for the interface rack region (a < x; <b, x, =0) as

hy, (x1) = —ho(x1), 5 (x1) = —ho(x1),

1 (50) = 6" (x0) = pl). ?)
Along the interface outside the crack (x; <a and b < xy, x, =0):
Wl () =u'(x), @) = "), @)
Th(x) =T(x), ko, (a) =Ry (x1);
and at infinity
hy=hy =0, o, =0;=0, (5)

where the convention ¢(x1,x5) = ¢4(x1) as x, — 0F for any function ¢(x;,x,) was used and will be
employed in the following sections.
The temperature continuity condition (4); along the bonded interface gives

Yoy (1) + 7 (1) = oy () + 7, (), or

! —/ ! —/ (6)
X1+(x1) - X11+(x1) = (1) = % (x1)-
One can define a function as
(z) —y(2), z€L,
R )
m(z) —7%(2), z€R

which is analytical in the whole plane cut along the a < x; <b, then Eq. (6) is automatically satisfied. The
heat flux continuity condition (4)4 along the bonded interface gives

kalxy, (o) = 7= (1)) = knlpy - (1) = 7, (1)), or

8
kit (1) + b, (v1) = ks () + Kzl (x1)- ®)
Then a function can be defined as
ki (z) + kuy(z), ze€L,
() = { viE) + k(). = 9)
kIIXlI(Z) + kiyy (z), z€R

which is analytical in the whole plane cut along the a < x| <b, Eq. (8) is automatically satisfied. Solving
Eqgs. (7) and (9) gives for z € L:
kg (2) = [k1©(2) + kikn0' (2)]/ [ky + ku,

kZh(2) = OC) — hO) + kiknl' )]/l + (19)
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and for z € R:
kuyyy(2) = [ku®(z) + kikn0' (2)]/ [ky + kul, (1)
k7 (2) = O(2) — [kuO(2) + kiku0'(2)]/ [ky + k).
Substituting Eq. (10) and (11) in condition (3); 5, one can obtain
1 , .
kI T kH [k1@+(x1) =+ klkue ( )] — @,(X]) + — k kH [kl@,(xl) =+ klkuei(xl)] = —1h0(x1),
(12)
1 , 1 .
kl i ku [kH@,()Cl) + k1k1197(x1)] — @+(X1) k ku [kII@+(X1) =+ kaIIH ( )] = —1h0(x1).
Subtraction of Eq. (12); from Eq. (12); yields
@+(x1)—@_(x1) :0, (13)

which implies the function ©(z) is also continuous along the region a < x; < b. Therefore this function is
continuous along the whole interface.

By the statement of analytical continuation principle (Rudin, 1987), the function @(z) should be analyt-
ical on the whole plane. But by Liouville’s theorem (Rudin, 1987), this function ®(z) must be a constant
function in the whole domain. However, the condition in Eq. (5); imposes that this function should vanish
at infinity. Therefore, this constant function must be identical to zero in the whole plane, i.e.

O(z) =0, for allz. (14)
Hence, following equations can be obtained from (9):

=/ k ' =/ k 1
Tn(z) = — kI/{I( z), ze€l; (2= kIII/Cu(Z) z€R. (15)

If the temperature field induced by the heat flux at the interface crack tends to zero at infinity, then inte-
gration of Eq. (15) gives:

- k _ k
@)= - 4@, z€L TED=-LmE. ek (16)
Further integration of Eq. (16) leads to
_ k _ k
;{“(z):—k—l;{l(z), z€L; Xl(z):—k—n}g”(z)7 zZER, (17)
il 1

where a constant contributing to rigid body motion is dropped. Eq. (7) turns to

[1 —l—,f—ﬂ)d(z) zel,
0(z) = (18)
(4840, -cr
Then both Eq. (12); and (12), become

kl + ki
kikn

The displacement continuity along the bonded interface gives

Aty (x1) + Ay (x1) + Cry, (1) + Cizp (x1) = Andy(x1) + Audpy, (x1) + Cuzy (¥1) + Cridar (x1)

0'+(x1)+9/_(x1) 1h0(x1) a<x3 <b. (19)
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or
A1y, (x1) _leam(xl) + Crypy (1) — alzlu(xl)
= Audpy_(x1) — 21517()61) + Cuyn-(x1) = Cir (x1). (20)
Define the function
o) — {441 ~Adu(2) + Cun) - Cut ). z e L. o
Augy(z) — A1¢1(2) + Cuypn(2) — Cizy(2), z€R
or
b(z) = A1¢y(2) _lean(z) + [knC + klan]X](Z)/klh zel, (22)
Ay (2) — iy (2) + [kiCu + kuCilyn(2) [k, z €R,
where Eq. (16) was used.Differentiation of Eq. (22) and making use of (18) yields
ﬁ&%:{mﬁg»—m@ﬂ>+am>,zeL, 23)
All¢ll() ¢()+€1 ()v ZGR?

where e; = [k Cy + kiCy]/[ki + ku) is a constant vector. Similarly, stress continuity on the bonded interface
leads to:

BI¢;+()C1) + Elai, (x1) 4+ Diyy(x1) + Dyyy_(x1) = Budpy_(x1) + Ellalm (x1) + Dy (x1) + BHKH(XO
or
Bigy, (x1) — Budyy, (v1) + Diyy, (¥1) — DuZiy (1)
= Budyy_(v1) = Bihy_(n) + Duziy_(x1) = Dizj_(x1). (24)
A function which automatically satisfies the condition (24) can be defined as:
B { Bi¢)(z) — Budy(z) + e20(z), z€L,
Budi(z) = Bidh(2) + @:0(2), z€ R

This function is analytical on the whole plane except the cut along the interface crack and in which
ey = [kuDy + kiDu|/[ky + ku) is a constant vector. From Eq. (22) and (25), one can obtain

Bigi(2) = N[ (2) — e10(2)] + NMy, [0(z) — e20(2)],

(25)

(26)
BIIQ’)H(Z) = Bi;(2) — 0(z) + e20(z)
forzeL;
Budhy(2) = IV[®'(2) — @0(:)) + N7, '[o(2) — @20(2), o)
Bi(2) = Bugy(2) — (2) + &0(2)
for z € R. Substituting Eq. (26) and (27) into the condition (3); 4, respectively, gives:
Bigr, (v1) + Budy_(v1) — - (x1) + &0 (x1) + il (D10, (x1) — Di0-(x1)] = —p(x1),
1+ ko (28)
Bugy_(x1) + Bid, (x1) — 04 (x1) + €20 (x1) M i s [Du0-(x1) = Db (x1)] = —p(x1),

where Egs. (16) and (18) are used.
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Subtraction of Eq. (28), from (28); yields
w+(x1) — w,(xl) =0 (29)

which means that the w(z) is continuous on the whole interface. By a similar argument as the one used in
obtaining Eq. (14), one can conclude that

w(z) =0, for all z. (30)
Either Eq. (28), or (28), leads to

@, (x1) + NN (1) =N p(xr) + 0,04 (x1) + 0,0-(x1)], a<xi < b, (31)
where
kII . —1 kI —r._ ——1_ 1 1 —1
lele—N[lel‘FMn e), Q2szII_N[IeI+M1 e, N =M +M;. (32)

The general solutions to Egs. (19) and (31) can be obtained by employing the contour integral technique
(Muskhelishvili, 1953). These solutions read, respectively, as (Appendix B):

iy kitkn P (xe)ho(x)
0'(z) = e x(z) {/a e dx; + P(2)|, (33)
/ 1 b xll (xl) _1
#(e) = 52) | [ TN o) + 0,0, 0) + 20l + )|, (34)
where P(z) and Q(z) are polynomial of z with degree less than one,
1 . z—b\“ [z—b\ "
X(Z) _ma X(Z) —VX(Z)A(Z, 6)7 A(Z7 6) _dlag[<z_a> ) (z—a) 71] (35)
and
v = [vy, 02, 03], (36)
in which, v; (j = 1,2,3) is the eigenvectors of equation:
(N + ™ N)v = 0. (37)

The matrix N can be expressed in terms of a symmetric matrix D and anti-symmetric matrix W as Ting
(1986):

N'=D-iw, D=L"+L;", W=S8L'-5SL". (38)
An explicit solution to eigenvalues of Eq. (37) is
1
1 . | ) 1 1+y 1 a2
= — = — — = — h = — 1 _— ) = _— .
o1 3 +ie, 0, 5~ e, 0> X with € 5, log [1 — y]’ Y [ 2tr(D W) (39)

It can be seen that once the applied loading /y(x;) and p(x;) is given, then the solution to the functions 6(z)
and @(z), hence fields functions y{z) and ¢(z) (j = T’ and ‘II’) can be found. Therefore, a general solution to
the thermo-elastic interface crack problem of dissimilar bi-media is then obtained. The stresses g, = ¢’
ahead of the interface crack read

[612,0'22,0'32}]—:Q,:N*¢,(X1)76*9(X1), X1 <aorb<x1, (40)
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where

N == I(N + ]\7)7 e; = 7” ! ot 5
k1+k1 (4')

e’ = i(N61 +N51) — (NM;lez — W;léz) + e+ e;3
and the crack open displacements (COD) can be delivered after some tedious manipulation:

Au=u' (x;) —u"(x)) = P, (x)) — P_(x1), a<x <b. (42)

2.2. Solution for the constant applied loading

If the applied loading on the crack interface is constant, i.e. /g(x;) = hy and p(x;) = po, then by contour
integration Eq. (1) leads to

iy kit ka)ho | z—(a+b)/2

@) = 2kikn ll (z—a)(z— b)] . 43)

Integration of Eq. (43) gives
(kb kn)ho

0) =~y -- VE=aG-1)], (44)
where the integral constant is dropped. The stress function can be found from (34) and it reads:

¥'(2) = oy (20" (N +N) " (ipy) + do(@)o (N + N) ' (ip}) + ds(2)o™ (N + V)~ (ip)], (45)
where

$1(2) =1 —x(2)4(z €)[E(2) + 1],

$1(2) = E(2) — x(2)A(z;€)[E(2°) + I E(z) — 1] + x(z) 15, (46)

$3(2) = x7'(2) = x(2)A(z; €)[E(2) — I1:5(2) + ] + x(2) s

and I (k=1 to 6) are defined in (113).
If the constant which only contributes rigid body motion is omitted, integration of the above function
gives (Appendix B):

&(z) = v[E(2) —xil(z)A(z; e)]lfl(N —|—N)_1(ip0) + U[E(zz) —x Az €)2(z) — Y1(z;€)
— Y (z; 6)1—[2]1)71(1\, —|—N)71(ip”{) +v[Y3(2) —x ' A(z;€)(E(2) - I~71) —Yi(z;¢)
)

— Ys(ze INYZ]U”(N +N)’1(ip§)7 @)
where
11, d1ag{a—;+(ba)le7 “‘;bi (b— aic, a+2—b ,
1, diag[bz_azie(l +462)(b—2a)2, 7b2;a2i€7(1 4o (1,_2(1)27 (b_za)z | (48)

ZF(z), Yi(z;€), Yo(z;¢) and Y3(z) are matrix functions defined in Appendix B. Once the temperature potential
and stress functions are found, the heat flux and stress field for this bi-media can be readily obtained. Here-
in is given the heat flux for the upper medium of this bi-material:
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o
B (x1,x2) = —Re| | | — ———=—— |7 ho,
(z—a)(z—b) (49)
2o
hs(x1,x) =Re|l - ——=——1h
2(,0) C_a)i_b)| "
and the stress fields for the upper medium read as
(611,021,031, = —2Re[iNv < p, > v ®'(z) — iD.10(2)], (50)
(011,021, 031]5, = 2Re[iN®'(z) — iD.0(z)),
where
- . ——1 k]]
D, = M —D . 1
¢ LN€1+N m €2 1k1+k11 (5 )
The COD for this case can then be expressed as
* * 7 * a + b B 2)Cl A\ -1«
Au(xy) =4/ (x1 — a)(b — xi)cosch(em){u (x1, €)[py + x1(p; + p3) — 5] +T(N +N) p3}
(52)
where
u; (x1,€) = vdiag b\ (b=xm\" cosch™' (en) [v ' (W +N) . (53)
’ x1—a) "\x;—a) ’

The traction ahead of the crack tip may then given by
t(x)) = [012, 0, 03] = N*®'(x)) — "0(x;)
= o _Z;(xl m—y v{[ (v —a) (1 — b)l = Axi;e) (E() + T)]o™ (N +N) ™ (ipo)
i/ (e — a)(x1 = b)i — A(xize)(E(P) + x0T, — IT,) + Hslo (N + N) ' (ip})
+H(r1 — a)(x1 = b)i — A(x13€)(E(x}) — x5 + y) + Helo™ (N + N) ™ (iPZ)}
—e'Ix1 — /(x1 — a)(x; — b, (54)

the notations I1y, I1,, I15, I14, II5 and I1g are defined in Appendix B and I = diag[1, 1, 1]. The conventional
Stress Intensity Factors (SIFs) ahead the crack tip such as for x; = » may be expressed as

[Ku, Kth]T = limb vV 2n(x1 - b)[6127 022, (732]T
X1 —

=+/2n(b —a)N*v lin}’A(xl; )[kio \(N +N) ' (ip,) + kav ™' (N + N) ' (ip})

X]1—

+ ko (N +N) 7 (ip})], (55)
where
N DU |
k; = —diag [E + i, 3~ 16,5:| ,
b+a b+a . b+a 1 (56)
4b —a) R T s i |
k3 = (b — a)diag[0.375 + € + 2i¢,0.375 + € — 2ie, —0.25].

k, = (b — a)diag |:62 - — bie, € —



922 R. Li, G.A. Kardomateas | International Journal of Solids and Structures 43 (2006) 913-942

Now the energy release rate G, can also be calculated for this interface crack propagation. Assuming the
crack grow at crack tip ‘b’ to ‘b + 8b’, Gy can be found from Egs. (42), (47) and (54) as

1 Ab T
Go = blél_l}) 25h /0 ou (X1 — Sb)t(xl)dxl (57)

For the simple case of the two media are identical, the explicit expressions for SIFs and the energy release
rate can be obtained, respectively, as

[KH, KI, KIII = —RC{\/ 27'[ — Cl 1p0 + k2p1 + kgpz]}

= Re{% oL ™" Py + (b — a)po L™ py + po L™ ety + bpy L™ py + bpi L' /4]} %)
where
pit = pidiag[l, 1,1]; P, :PTdiag[l,l,%], pldlag{b—i—a b+a, b—;3a] (59)
If there is no applied mechanical loading, i.e po = [0, 0, O]T, then Eq. (58) can be expressed as:
Go = nb(bg— a)pTTL_lﬁT~ (60)

So far in this section, a solution as well as the method leading to the solution for a crack in a thermo-
mechanically loaded anisotropic medium was presented in details. And it can be seen that the general solu-
tion given here lays the foundation for the study of the branched thermo-elastic crack phenomena.

3. Green’s functions for thermo-elastic dislocations in anisotropic bi-media

When a dislocation (Stroh, 1958) is introduced into one of the elastic bi-media under thermal loading, a
temperature discontinuity (also called heat vortex, Dundurs and Comninou, 1979) is induced across the cut
plane associated with the conventional (or mechanical) dislocation. This concept of heat vortex first
appeared in literature several decades ago and has been studied by many authors, such as Sturla and Barber
(1988). But most of the functions of displacement and stress fields due to the heat vortex cannot be directly
extended to the dissimilar anisotropic media. To overcome this difficulty, mixed terms are adopted in the
expressions for displacement and stress functions. The functions of the heat vortex may be assumed for dis-
similar anisotropic bi-media (Fig. 2) as

rrrrrrrrrrtte

Fig. 2. A thermo-elastic dislocation in dissimilar anisotropic bi-medium.
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T{ = 2Relgy, log(z, — z0) + 1. log(z. — Z0)], z € L;

d (61)
Ty = 2Re[g,, log(z, — zw)], z€R.
The corresponding heat flux 4, can then be expressed as (Sturla and Barber, 1988):
g, = 2k Im o + q“_} , z€L Ky, = 2kulm{ EE ], z €R, (62)
2t = 270 21 T Z0 2t = 270

where ¢,, = 4—2, q1. and ¢, are constants to be determined. The displacement and stress functions may then
take the form

ul =2Re[4; < log(z, — za0) > quo] +
pa

3
ZAI < log(zy — Zaok) > qlk‘|

+ 2Re[4; < (log(z, — z:0) — 1)(z0 — z20) > 142
+ 2Re[Ci(go. (log(z: — z) — 1)(z: — za0) + qy.(10g(z: — Zx) — 1) (z: — Z0))], (63)
’;
(pf =2Re[B; < log(z, — za0) > q,) + 2Re Z 1 < log(zy — Zaox) > qlk]
k=1
+ 2Re[Bl < (log(zy — zw0) — 1) (24 — z:0) > ‘Ildr]
+ 2Re[Dy(qy. (log(z: — z:0) — 1) (2. — z20) + ¢4, (log(zc — Z) — 1)(2zc — Zao)]
for upper half-space (x, > 0) and
. -
ujy =2Re| Y Ay < log(z, — zaw) > ¢y | + 2Refdn < (log(z, — Za) — 1)(z — Zx0) > G2y
iz |
+ 2R€[CH(10g(Z —Z 0) - 1)(Zr - Zfo)qu],
g ! (64)
¢ =2Re| Y Bu < log(z, — zaw) > ¢y | + 2Re[Bu < (log(z, — Zw) — 1)z — Zx0) > G2
| k=1 i

+ ZRC[DH(IOg( Zr — Z‘[O) - 1)(21 - ZTO)qZT]

for lower half-space (x, < 0), where g,y = 5= B[ b (Barber and Comninou, 1982). It should be mentioned the
mixed terms < (log(z, — zx0) — 1)(z; — z0) > and < (log(z, — Zx) — 1)(2 — Z0) > were introduced to
reflect the interaction between the heat vortex and the conventional dislocation due to the mismatch of
the properties of the upper and lower media. This is very important in order to ensure the continuity of
the displacements and tractions along the interface of the dissimilar bi-materials. Substituting Eqgs. (61)—
(64) into the boundary conditions along the interface,

Td(xl,X2—0 ) T‘lil(xl,xz—O ) hgl(xl,x2:0+):hg“(xl,xzzof),

. _ (65)
u(x,x = 0") = uf (v, =07), ¢ (xi,00=0") = ¢ {(x;,x2=0"),
one can obtain (Appendix C):
kl kH o 2k1
9. = kI +k 7 Y00 92 = kI +kII 905
Bigy = N(_N +2L; )Ellkqdm Bugy = 2NLlellk6]do7 (66)

— 1 . T
Biqy4. = N[Mn D+ IC]%w Bugay, = _N[MI D + IC]QOT'
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The heat flux and stress fields can then be readily calculated. Following are these quantities for the upper
medium,

2t — Z:0 Zr — E‘[O

hﬁ:—Zkllm[ or oy e r],

(67)
htzci — 2k11m[ 90: 4 QIZ :|
Zr — Zq0 Zr — Zq0
and
: P P
611,021, 0 = —2Re B <« > Lig, + B K > ]
[ 11,021 31] ; [ I Z — oo k90 I Z —Zan 91k
+ 2Re[BI < Dy log(z - ZTO) > 91d+ + DI(T lOg(ZT - ZTO)qO‘E + ‘ClOg(ZT - ZTO)ql’L’)]7
[0'12,622,632]12 —2R€Z B << >>1qu + By <<Z = > qlk:|
o = Zdok
+ 2Re[ < log( —20) > qi4e + Di(l0g(z — 2e0)q0, + l0g(z — Z0)qy.)]-
(68)
The heat flux and tractions along the interface are, respectively:
Akikn 9o }
By (x)) = Im|—" 69
2(0) ky + ki X1 = Zg0 (69)

and

tye = [012, 022, 032]dTT

3
2 [ T 2k
- 2Re{kz [xl _ZdOkNLI Bllkqdo} - {log(xl —Z0)N(M, D +iC) — log(x, Zro)mDH} qm}

3
2 2k;
= NL7'BI 1 —z0)[INWM7'D —iC) + D
2Re{k§1 [xl — NLB k‘Ido} + log(x1 — z:0) [N (M iC) + . H}%T}
(70)

where the relationship Re[l/(x; — zgor)] = Re[l/(x1 — Zaor)] and Re[log(x; — z,] = Re[log(x; — Z,] are used.

4. Thermo-elastic interaction between the interface crack and the dislocations

Replacing the /(x;) of Eq. (33); with —AS(x;) of Eq. 69, one can obtain a closed form solution for the
interaction temperature potential function, and this reads:

B:nt( ) % b}(Z7ZIO) er(Z, ZrO)]a (71)
where
Y(z,200) = ! 1 —x(2)x " (z:0)] — x(2). (72)

Z = Zy
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Integrating Eq. (71) and dropping some constants yields

Oini(2) = % (2, 20) + ¥(2,Z0)] (73)
with

x(z2) +x7(z0) + (Zfo - M) (z — z:0)x(220)

V(z,z4) = lo
(2, 70) = log st Je—aG-b

It can be seen that the interaction thermal potential function is not singular at the point z = zy. Comparing
with the contribution from the term —0 for the onset of interface crake branching, the influence of function

Oint(z) on the interaction stress functions, which can be obtained by replacing p(x) of Eq. (33), with —t, of
Eq. (70), can be ignored. Therefore, the interaction stress functions can be obtained as

(74)

(p:m( ) = [VYk<Z,Zd()k;E)Vil(N-i-N)_luQ{k — va(Z7Ed()k;E)Vﬁl(N‘i_N)_lEk]b, (75)

NE

=~
Il

1

where

Yi(z, zaons €) =<

(z—a)(z—b) z—a)z—b)  (76)

Z — Z4ok

oy = NL;'BI;B{ /=,

> li — \/(Zd()k — @) (zaoc b)A(z; e)A_l (Zaok; 6)‘| - 4€)

and the following notation is employed:
A(z;€)
(z—a)(z— D)

l\)l.—-

- diag[(zl )G — ) (2 — ) (e — @) T (5 — ) H(zs — a)” ] (77)
By employing L’Hospital principle, one can easily show that the y(z, z,0) and Y(z, zox; €) is not singular
when z — z, and z — z,, respectively.

The heat flux and stress fields induced by the interaction for the upper medium can then be written,
respectively, as

kik
ki + kn

kaII

hinl — _2
! 1+ ko

Reloll, (@), " =2, Re[0,(2)] (78)

and

[611 , 021, 631]i1mT = _2Re[1ND <<pc¢ > Uﬁléint( ) - iTﬂt‘cainl(z)]’

L (79)
[012,02270%2] —2Re[1N<Pl (z) — 1DinOine(2)],

where Dy, = D,.

5. Thermo-elastic interface crack branching in anisotropic bi-media

A main crack located at the a < x; <b, x, =0 of coordinate system (xj,X,,x3) is assumed to branch
into x, >0 (or x, <0) at an angle 6 = w shown in Fig. 3, in which a new coordinate system (&,#,x3) is
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Fig. 3. A branched thermo-elastic interface crack in dissimilar anisotropic.

introduced for the sake of convenience. Similarly to the conditions for the main crack, the boundary con-
ditions for this branched portion read in this new coordinate system as:

hay(8,07) = =h(8), m(&,07) = —h(&);

[06(&,0), 03 (&,07), 03, (&, 00)]" = =p(&); [06(&,07), 0, (&,07),05,(£,07)]" = —p(&). (50
If the applied thermo-mechanical loading at infinity is constant, then:
cos(2w), 1sin(2w) 0
h(&) = hgcos(w);  p(&) =|—sin(2w), cos*(w) 0 |po (81)
0, 0 cos(w)

where vector py =[012, 025, 032]T is the constant applied traction at infinity.Now let us consider the total
heat flux and traction at any point on the plane =0, i.e. 8 = in the polar coordinates system
(r,0,x3), then by superposition:

' (&,0) = hy(r, @) + By (r, ) + b (r, o),

, (82)
ttOt(éa O) = tg(l", (U) + tlem(rv w) + t;d(rv (U),

where the superscript ‘c’ and ‘td’ denote the corresponding fields induced by the main crack and the ther-
mal-mechanical dislocations, respectively; ‘int” denotes the fields induced by the interaction between the
crack and the dislocation and ‘tot’ is the summation from all contributions. It would be more convenient
for the calculation if the terms on the right sides of the Egs. (82), expressed in the coordinate system
(x1,X2,X3), are transformed into the corresponding quantities in the coordinate system (7,6, x3) or the sys-
tem (&,n,x3). Following is the transformation relationship

h = hycos(w) — hy sin(w),

t= Qz(w)[mz, 022, 0'32]T - Ql(w)[GU»O'Zb 031}T, (83)
where
cos’(0)  1sin(20) 0 Lsin(20) sin’(0) 0
Q(0) = | —1Lsin(20)  cos*(0) 0 |, @(0)=|-sin’(0) lsin(20) 0 (84)

0 0 cos(0) 0 0 sin(0)
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and ¢;; and o, are stresses measured in system (x1, X, x3) and defined by Eq. (106); &, and 5, are heat flux
measured in system (xi, X, x3) and defined by Eq. (107). Then, each term of the right hand side of Eq. (82)
can be easily expressed in terms of the temperature potential functions and stress functions obtained in pre-
vious sections. If let u = cos(w) + tsin(w) and { = cos(w) + p,sin(w), then z, = ru, z,o = roy, z, = r{ and
Z40 = rol. Therefore, one has:

I (r, ) = B (i) cos(w) — I (1) sin (),

higm(r, w) = hizm(r,u) cos(w) — hilm(r,u) sin(w), (85)

B (r, ) = B (i) cos(e) — K (rya) sin ()
and

t?)(’”a ) = Q(w )[012,0'22, 032] - Q(w )[0'11, 021, 0%1]T

tiqm(”a ) = Q(0)[012, 022, 632]1,1[ — Qi(w)[o11, 021, 031Lm7 (86)

th(r, ) = Qs (0)[012, 022, 632y — Q1(0)[011, 021, T31] -

Without loss of generality, it can be assumed that the interface crack branches into the upper media. The
branched portion of the crack can be modelled by the continuous distribution of the dislocations with den-
sity To(ro) = —dTo(ro)/dre and b(rg) = —db(rg)/dro. Then the boundary condition (80) and Eq. (82) lead a
system of singular integral equations:

ky [© Ty ky € c

g A— dro + I /b K. (r,ro)Todry = hycos(w) + hy(r, w), (87)
where

ky — kn [ 14 } ku 1 (VO,U —a)(rop — b)
K r,ro) = — Re —| + Re 1—
((r:70) k + kn ri— roll ky 4 ki r—r (re—a)(ru —b)
4 M (1= (roft — a)(ropi — b) 2p : (88)
ri— 1ol (ru—a)(ru—b) (ru—a)(rp —b)
1 (r, ) =hoRe | p| 1 — —E— (@+b)/2
(ru—a)(rp — b)

and

1 [ tiw) 1

- p— ——bdr, —|— Kb r,ro)bdry + Kb, r,ro)Todrg = Qopy + t5(r, ®) (89)

» F—To
in which
1
A p(w) =TIm [QZBI < = 7 > Bl + Q1B < iﬁ‘ > BIT}
';
3 1 o .
Ky(r,r0) =Y _Im {QzBI < ——— > B;'(I - 2NL;"\Bil,B,
k=1 VC - rOCk
+ QB < —L+ > B (1 - 2NLY)BuLB,
r{ —roly

2 . _ L
— N (Yi(r¢, roluev ' (N +N) oty — oY (rE, rolise)o (N + N) ')
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) —_
—EﬂlN(v < p, > Yi(rl, rolize) v (N +N) ez,

— v < p, > Y (rlrole)v (N + N) 'y,
I(bt(l"7 l"()) = QzIm[BI < IOg(I{ — ot > BilN(MHD + IC)

ki — — o (90)
+ Di(log(ru = ropt) — = = log(rp — roft)) + Din(F(r o) + F(rpt, rof0))]
+ QIm[B; < p, log(r{ — ro,u > B{'N(MyD +iC)
+ Di(log(ru — rop) — ki k“ = log(ri — rof))T + Dim (P (rat, ropt) + ¥ (rit, rot) e,
where 7, = diag|0, 1,1],7, = diag[1,0, 1], 15 = diag[1,1,0]. Let
1+x)I 141)l
:%7 I"OZ(T)7 l:C_b7 (91)
where, |x| <1 and |¢7] <1, then Eq. (87) and (89) may be rewritten as:
k (1T
k[ T dt+—/ R (x, 6)To dt = hy cos(o) + K (x, ),
2n ,1 x—t (92)
1 [ oy(w)

; bdr +— / K,, (x t)bdt+—/ K,,, (x,0)Todt = Qopy + t5(x, w),

T J_1 X—

where K (%, 1), K »(x,¢) and Ky (x,t) are obtained by substituting (91) in K(r, ro), Ku(r, o) and Kp(r,rg), cor-
respondingly. This system of singular equations involves two unknowns, namely 7 and b, which are cou-
pled through the term K, in (92),. One can let (Erdogan et al., 1973):

To=wi(7 (), wile) = (146 (1= 1)},
s 1
b(¢) = wa(£)b(2), wa(t) = (1 +1)72/(1 — )~
Since the heat vortex density at both ends of the crack branched potion is bounded and the singularity at the
intersection point of the main crack and the branched crack is of order less then , then one can have s; = —1/
2 and s, = 1/2 (Li and Kardomateas, 2005). Therefore, by using Gauss—ChebvsheV integration Eq. (92), can
be solved. Once the solution for 7} is obtained, substituting into (92), and using Gauss—Jacobi integration
formulas, the entire system of equations can be solved. Following a similar fashion as in Li and Kardomateas
(2005), the numerical schemes for solving Eqgs. (92); and (92), can be, respectively, written as

yoLlod F(t)[i 1 —E,(t[,xk)] :k%[hoCOS( )+ by, )],

(93)

- n+1 t; — Xp (94)
t; = cos _m_ (i=1 ); = cos m2k= 1 (k=1 +1)
;= | i=1,...,n); x= >l =1,....n .
and
"1 [of ~
Z_{ v(©) Kh(tz»xk)}b( i) = —py — ty(x, @ +—/ Ky (i, )Ty dt,
—'n t; — Xp
Th(t) = Au, (95)

2i—1 nk
ti—cos(n Zn) (i=1,...,n); xk_cos(7> i=1,...,n=1),
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where the second equation i.e. (95), comes from the condition fi . b(#) dt = Au, which satisfies the continuity
of displacement at the intersection point between the main crack and the branched portion. For an approx-
imation, one may take f_ll b(¢)dt ~ 0. But for more accurate computation, one would use Eq. (52) to eval-
uate the Au by letting a = —(L + Icos (w))/2, b = (L + [cos(w))/2, and x; = L/2, where T denotes the length
of the branched portion of the crack and ‘L’ the length of the main crack. The integration of the third term
on the right hand side of (95); was performed by using Simpson’s rule. Since the nodes used in (94) and (95)
are different, the polynomial interpolations were also used to obtain the values of K, (x,¢) and To(7) from
nodes in (94) for those values which are needed for the nodes in (95);.
The conventional stress intensity factors (SIFs) at the branched crack tip may be defined as

K= [KH, KhKHI]T = lim 27r(r — l)t“"(r, (D) (96)

It

Using the technique given by Muskhelishvili (1953), the SIFs can be evaluated as

K = lim \/27(r — ) F

r—l T

/ | &fh_@m(t)b(r)m% / Rl w07 (0

1 xX—1

= 5o @@p() o7

where an elementary relationship lim,_,+ \/H log(x — 1) — 0 is employed, and
cos(w) sin(w) 0
Qy(w) = | —sin(w) cos(w) 0]. (98)
0 0 1

Once the onset of the branching of an interface crack happens, this crack usually propagates in one med-
ium. Therefore, the energy release rate may be approximated as stated in Barnett and Asaro (1972) by

Y(w) = %KTfIK, L = Q1 (0)L2(0), (99)

where ‘L’ is the bi-material property matrix.

6. Numerical results

In this section, the influence of thermal loading on the delamination branching in composite bi-materials
will be demonstrated. Two typical Graphite Epoxy composites were used as ‘raw’ or ‘basic’ material in the
numerical simulation. The first material, called material-I was selected with thermo-elastic properties of: mod-
uli in GPa: E}, = 5.69, E}, = E%; = 4.07, G}, = 9.79; Poisson’s ratios: v}, = v}, = v}, = 0.01; thermal con-
ductivities in W/m/K: k|, = 42.1, kj, = k}, = 0.47; thermal expansion coefficients in m/m/K: o}, = 0.025
x107°, b, = al; = 32.4 x 107°. Thermo-elastic properties of the second raw material (material-I) read as:
moduli in GPa: EI} =2.312, EI) = E% = 5.17, G5\ = 0.174; Poisson’s ratios: v}} = v} = vI! = 0.1; thermal
conductivities in W/m/K: k| = 53.7, ky, = ki, = 0.73; thermal expansion coefficients in m/m/K: ol} =
0.034 x 107, ol = ol = 34.2 x 10°°. The angles 0; and 0y; define the angles between material principal axis
and the x; axis for upper and lower medium, respectively. The unit axial tension a5, and unit heat flux ¢ in x,
direction are considered to be the applied loading (Fig. 3).

Fig. 4 and 5 is the convergent illustration of the numerical scheme employed in Section 5. The bi-media
used here consists of material-I as the upper medium and material-I1 as the lower medium and its bi-mate-
rial parameter y, defined in Eq. (39), equals 0.0662693. Depicted in Fig. 4 are the Mode I (K;) and Mode II
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Fig. 4. Variations of stress intensity factors versus relative length (//L) of branched crack.
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Fig. 5. Variations of stress intensity factors versus partition points of N.
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(K7p) stress intensity factors around the branched crack tip as functions of L/l. The number of partition
points in (94) and (95) is n = 120. Results of two cases were plotted, one for the assumed branching angle
o = /3 and the other for w = n/4. It can be seen that when //L > 0.1, both values of K; and Kj; converge
very well. When /L > 0.00125, these values almost do not vary with the change of //L. Therefore, the
behavior of a branched crack with //L = 0.001 can be considered as the behavior at the onset of interface
crack branching. Usually, the onset of crack branching is of most interest in the study of interface crack
problems. Fig. 5 gives the variation of K; and Kj; versus the change of partition points n. The value I/
L =0.001 was used here. To obtain these results, An was set to be 10 and AK is defined as the difference
of the K evaluated at n=i+ 10 and n=i (i> = 20), respectively. It can be seen that AK— 0 as
n — oo. This means Kj and Kj; converge with increasing n. The plotting shows that one could get a good
approximation by using n = 60 in the computation if one’s computer memory is not big enough and the
choice of partition points # = 120 in this paper would be very reasonable. Of course, if the computer mem-
ory permits, one can set n to be a big number. Thus, the infinitesimal crack branch was assumed to be
[/L =0.001 and the n was taken to be 120 in current paper.

6.1. Interface delamination branching for a general dissimilar anisotropic bi-media

As described in the above convergent study, the material properties (thermal and mechanical) of the
upper and lower medium for this general bi-material structure are quite different. This type of bi-media
can often be found in applications in many areas such as coating, electronic package, bio-mechanics struc-
ture, aerospace and nuclear power generator structure, etc. The components of a structure in these appli-
cations often have different thermal and mechanical properties and can operate under a severe temperature
gradient. Therefore, the study of thermo-elastic interface crack branching propagation behavior is not only
of theoretical importance but also of practical significance.

Fig. 6 and 7 show the mode I and mode II stress intensity factors and energy release rates versus the
branching angle under different applied loading conditions. The orientation for the components of this
bi-material media is 0y = /6 and 0y; = —2n/3. Three sets of results are plotted for three loading condi-
tions: solid line for combined loading of unit 65, (1 N/m?) and ¢, (in W/m?); dash-dot line for only unit
02> applied; dash line for only unit g, applied. Several interesting observations can be made from the re-
sults in these two figures. In Fig. 6, the branching angle at which the Kj attains its maximum under com-
bined loading is different from the corresponding angle under pure mechanical loading or thermal loading.
For combined loading, w = 51.44° and K. = 3.3394, while for pure mechanical loading, w = 43.45° and
Kimax = 1.5507 and for pure thermal loading, w = 57.4665° and Kin.x = 1.8198. If the bi-material media
originally under pure mechanical loading, then the Kj,,,x would increase by 115.3% due to additional ther-
mal loading; or on the other hand, if the bi-material media originally under pure thermal loading, the K.
max then would increase by 83.5% with the additional mechanical loading applied. The results for energy
release rate G are plotted in Fig. 7 and they share a similar tendency as those for Kj in Fig. 6. The angles
at which the Gs reach their maximum values are also different: for combined loading, when w = 40.94°,
Gax = 9.7478; for pure mechanical loading, @ = 34.78°, G =2.3294 and for pure thermal loading
w =45.23°, Gpax = 2.7123. If one assumes that original loading is purely mechanical as in many engineer-
ing construction, then Gp,,x would increase by 318.5% due to the additional thermal loading. One can see
that although the energy release rate is a scalar value, its value under combined loading is not the sum-
mation of the values from the purely applied mechanical loading and purely thermal loading, in fact it
is much bigger than the summation. The difference of these two values reflects the fact that a huge inter-
action energy would be produced once a heat flux added onto a mechanically loaded structure which
includes defects. This observation can have significant implication in practical structure design. For exam-
ple, according to the K-based criterion, interface cracks in a structure, usually operating in a constant tem-
perature environment, would not grow from a sudden fire since the increased value of K may still fall into
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Fig. 7. Energy release rate for an anisotropic bi-medium (0; = 30°, 0, = —120°).
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the design tolerance. However, there would be a strong interaction energy induced by the heat flux accord-
ing to the energy release rate criterion, hence cracks in the structure may actually branch and grow
quickly. Therefore, for the safety of the structure, a damage tolerance design should be based on a G-based
criterion.

There are also some other interesting observations. In Fig. 6, one can see that when Kj reaches its max-
imum, the Kj; does not equal to zero for each loading condition. This observation differs from that in
monolithic isotropic medium or dissimilar quasi-bi-material media (which defined in next section) under
pure mechanical loading, in which K} is maximum when at the same time Kj; = 0. Two aspects may con-
tribute to this difference: y # 0 and/or the thermal loading effects. The above observations could suggest
that the G-based criteria may be more suitable than the usual K-based criteria to predict thermo-elastic
interface crack branching propagation for dissimilar anisotropic bi-material media.

6.2. Interface delamination branching in a quasi-bi-material media

For most dissimilar anisotropic bi-material media, their bi-material parameter y usually is not zero.
However, there is a set of bi-media whose constituents can be dissimilar but its bi-material parameter
7 = 0. We define this type of bi-media as ‘quasi-bi-material media’. Many engineering composites materials
belong to this category. One way to produce such a composites is using one raw material and rotating the
material axis with respect to the structure axis by different angles for the upper and lower components. It
can be easily proven that the y = 0 for this type of dissimilar bi-material media (Appendix D). Because of its
special character the quasi-bi-material media is found to have some interesting behavior regarding the phe-
nomenon of interface delamination branching.

Let us first consider a special loading condition case: pure mechanical loading [no thermal loading by
setting go = 0.0 in Egs. (94) and (95)]. The ‘basic’ material elastic constants are similar to those in Miller
and Stock (1989), i.e. moduli in GPa: E;; =4.89 Ej = E;3=0.407, G, =0.731; Poisson’s ratios:
Vo1 = Vo3 = v31 = 0.02. This raw material was used as upper medium. The lower medium was also made
from this raw material but with the principal material axis being rotated 0y = —n/6 with respect to the
(x1, X2, x3) coordinate system. The bi-material parameter y equals zero, as proven in Appendix D.

The results of Mode I and Mode II stress intensity factors and energy release rate versus the branching
angles are plotted in Figs. 8 and 9. Fig. 8 shows that the angles at which maximum values of K} are attained
(w=21.86° and w» = —11.83° for upper and lower medium, respectively) are the same angles where Ky
approaches zero and there is a discontinuity in the stress intensity factors across the w = 0° angle. These
two observations are in good agreement with those in literature such as in Miller and Stock (1989), and
this provides a kind of validation for the numerical scheme in the present paper. One remark: the materials
used in this paper are similar to the ones used by Miller and Stock (1989), but not exactly the same; there
are still some differences, such as the v;; being different. Therefore, some disagreements in the comparison
are expected.

One can easily see that in Fig. 9 the angles at which the maximum energy release rate occurs (o = 10.9°
and w = —22.5° for upper and lower medium, respectively) are different from the angles for maximum Kj. It
seems that there are two possible angles for the interface crack branching growth, one is —11.83° which is
based on maximum Kj (or zero Kjp), the other one is —22.5°, which is based on maximum energy release
rate. However, we often observe in experiments (La Saponara and Kardomateas, 2001) that crack branch-
ing usually tends to grow parallel to or along the fibers’ orientation (which is 0° for the upper medium or
—30° for the lower medium in this case) in fiber-reinforced composite materials and this growth usually
happens in weaker (more compliant) media as is always seen in sandwich debonding tests, i.e. debonding
often branches into the core, almost never into the face sheet (La Saponara and Kardomateas, 2001). Here,
the angle w = —22.5° is very close to the orientation (6 = —30°) of the stiffer material axis of the weaker
(or more compliant) component of this bi-material media. Therefore, these observations lead us to conclude
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Fig. 8. SIFs at the branched crack tip vs. branching angle for a quasi-bi-material under pure tension loading.
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Fig. 9. Energy release rate for the branched crack vs. branching angle for a quasi-bi-material under pure tension loading.
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that a maximum G-based criterion than a K-based criterion may be more accurate in predicting the inter-
face crack branching for dissimilar anisotropic bi-material media. It should be noted at this point that the
branching depends on both the max Gj (the energy release rate if the interface crack) and the toughness of
the interface/body. But the comparison made in this paper attempts to offer tentative guidelines that could
help in the establishment of a correct failure criterion.

The influence of thermal constants’ mismatches on the branching behavior of an interface delamination
can be reflected by the difference between orientation angles 0; and 60p. The following example serves as
such purpose. Figs. 10 and 11, respectively, show the results of Mode I and Mode II stress intensity factors
and energy release rate versus the branching angles for three different bi-material media, which are formu-
lated by letting 0y = 0.0 while Oy = —n/6, Oy = —n/4 and 0y; = —n/3. Besides some observations similar to
those in Figs. 6-9, several other observations can be made from Figs. 10 and 11. It can be seen that there is
a discontinuity of the stress intensity factors and the energy release rate when the branching angle w
approaches 07, respectively. This discontinuity for K; and Kj; was also shown on Fig. 8 and in the results
of Miller and Stock (1989). But for pure mechanical loading there is no such discontinuity for the energy
release rate as plotted in Fig. 9. This discontinuity on energy release rate in Fig. 11 shows another effect of
thermal loading. Negative K7 (contact of the crack faces around the crack tip) (Li and Kardomateas, 2005)
appears for the bi-material of 0;=0.0, 0y =—n/4 when the branching angle w>13.75° or
—21.25° < w < 0° (the ‘-’ sign means the interface delamination possibly branches into the lower medium),
an observation being consist with the one in (Li and Kardomateas, 2005). Some other interesting results can
also be observed in the plot of energy release rate. It can also be seen from Fig. 11 that the interface tends to
branch into the lower medium, a result being consist with the observation in Fig. 7. But the corresponding
maximum energy release rate, which is G, =21.03 for the bi-material media with 0y = —n/6,
Gmax = 13.12 for the bi-material media with 0 = —7n/4, Guax = 138.15 for the bi-material media with

L N Oy =-16,---- 0,=-m/4
104 ~ N ——— 9”:—1'[/3

7 N I/L =0.001, N =120

8 4+——7——17———t+—F—F—1——7—
.90 -75 -60 -45 30 -15 0 15 30 45 60 75 90
0
(O]

Fig. 10. SIFs at the branched crack tip vs. branching angle for a quasi-bi-material.
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/ \ 20 |
7/ \ i
/ \ \
100 — \
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Fig. 11. Energy release rate for the branched crack vs. branching angle for a quasi-bi-material.

0 = —n/6, does not simply increase as the orientation angle 0y increases. In fact, Gyay reaches its mini-
mum value when 0;; = —n/4. This observation may indicate that 0;; = —n/4 could be the optimal orienta-
tion angle between the upper and lower medium for this bi-material media. Therefore, the results may be
useful in optimal design for damage tolerance.

7. Conclusion

In this paper, a closed form solution is obtained for the thermo-elastic interaction between an interface
crack and a dislocations (the thermal vortex and mechanical dislocation) in terms of matrix notation. The
thermo-elastic interface crack/delamination branching phenomenon for dissimilar anisotropic bi-material
media was subsequently investigated in detail. The influences of thermal loading on the onset of interface
crack branching is addressed. The results of various cases are consistent with the observed fracture phe-
nomena in composites and sandwich coupons with debonds. The observations in this study may suggest
the following conclusions: (1). For general dissimilar anisotropic bi-material media, there usually exists a
large interaction energy between the thermal loading and the mechanical loading for a structure with
defects. This may have consequences, for example, in promoting failure when an imperfect bi-material
structure is being exposed to a sudden fire; (2). G-based criterion may give more reasonable prediction than
a K-based criterion for interface delamination branching angles of dissimilar anisotropic bi-media; (3). For
some anisotropic bi-material media, negative K (overlapping of the delamination faces around the crack
tip) is possible under certain loading conditions due to the thermal effects; (4). There exist an optimal ori-
entation angle difference between the two constituents of a bi-material media. This optimal difference could
minimize the value of maximum energy release rate. Therefore, the results in current work may also provide
some useful guideline for damage tolerance engineering design.
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Appendix A. Summary of some basic thermo-anisotropic elasticity formulas

For a plane system, the non-trivial displacement u = [u;, u», u3]" (with corresponding stress functions
¢ =[@1, 2, ¢3]") and temperature distribution 7{(x;,x,) which satisfy equations of equilibrium and heat
conduction (with corresponding heat flux h;, i = 1,2) are:

u=Ad(z,) + Ad(z) + Cx(z:) + Cx(z); @ =B(z,) +B(z,) + Dy(z.) + Dy(z.),

(100)
T(x1,%) =1 (z0) + 7/ (z0);  hi = —(kn + thin) 1" (z) — (ks + Thn)x" (z2),
where A =[a, a,, a3] and B = [by, b,, b3] are 3 X 3 matrices which satisfy the identity:
BT 4T A A I 0
1 _1|X _| = ; 101
B 4| |B B ‘ 0 I ’ (101)

C and D are 3 x 1 vectors; ¢(z,) is a function vector and y(z) is a scalar function; z, = x| + p,x, (¢ = 1,2,3)
and z, = x; + 7x5; the overbar () denotes the conjugate of a complex variable, the prime ' denotes differ-
entiation with respect to z, or z;; k;;, kp (i =1,2) are coefficients of heat conductivity; the constant t is
the root with positive imaginary part of the equation

kzg‘l,'z + 2k12‘[ + k“ = O, (102)
the p,, a, b, ¢ and d are constants which satisfy the following equations
a a N1 N, ¢ c 0 Ny |p
N| | = , = , = - ) i = Pits = Pi 103
b p b ‘N3 NT d T d ‘ I NlT 5, Br)i = Ba,  (Bo)i = Bo (103)

in which, Ny = —7T"!' R", N, =T, Ny= RT'R" — Q; the superscript ‘T stands for the transpose of a
matrix and

Oy = cirt, Ra=cma, Tiu=con, k=123 (104)
The function vector ¢(z,) takes the form
O(z,) =< 1(z,) > q < f(z,) >=diaglf(z),f(z2),f(z3)], (105)

where f(z,) and q are, respectively, the unknown functions and constants to be determined for a given prob-
lem and the < >> stands for a diagonal matrix. The stresses can be written in term of stress functions as:

aq)i a(pz / .
01 = — axz = _(Pi,2’ Opp = aixl = qoi‘] = (pi’ 1= 172737 (106)
. . 0p; do, . .
where the relationship a(p’ = dil = ¢, is used in (106),.
X1
If we let k = kyy(t —7)/2i, then k = y/ky1ky, — k7, and
hy = ikty"(z,) —ikty"(z.), hy = —iky"(z.) +iky"(z.) (107)

Here, three useful matrices are defined as

H =2i44", L= -2iBB", S§=i(24B" —1I), (108)
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where I = diag[1, 1, 1] is a unit matrix. It can be shown that H and L are symmetric and positive definite
and SH, LS, H 'S, S, SL™! are anti-symmetric and the following relations can be

M= —iBA' =H'(I +iS) = (I —iS")H ",

109
=B =L (I +iST) = (1 —-iS)L 7. (109)
Appendix B. Contour integral for the interaction function
From Egs. (34) and (44), the interaction stress functions read as
: 1 PX(x )
(z) =5-X() el Hpo + pixy + paiy/ (v — @) (b — x1)]dvi + 0 (2) |, (110)
where
* * * * * . k + k
pr=(pr+p)hg, Py =(py—p)hg, hy=—i " hy. (111)
2kerkn

By using contour integral one can get:
X X 'x) H 1.
5y =8 [ dn = ol — @Az 1B + b 8+ N i)

X b X!
Jr = (Z)/ )

X1 —Zz

—v{ (2) = x(2)4(z;¢)[Z ( )+ ME() — L]} (N +N) ™ (ip));

_ X!
J3 = / e - (XI)N71P§®1
271

X1 —Z

=v{x"(z) —x(2)A(z; €)[2(?) — E(z) + IL}v ' (N + N) " (ip});
) (a—b)’ 1
8 (z—a)(z—b)

— Q1(2) = vdiag [0707— 1U_I(N+N)li(1f{ +p)

+ vdiag [0,0,ml [HZLFI(N +N)’1(1p*;) + (H% + 1,115 + H4)071(N _’_N)—l(lpz)]
(a—b)z (a—b)2 (a—b)2 I
T SVE ot - ) 8@ - @) - b) 8y — @) - b>] v (N +N) (ip)
=vdiag [0, 0, (Z(b__a;l()z — b)] NN V) ip
" Udiag[ ok o ¢-o) ]vluv +F) i}

8\/(21 — a)(21 — b 78\/ 22 — a)(Zz — b) 72\/(23 — Ll)(Z3 — b)
N) " (ip}) + vx(z) v (N +N)™' (ip3),
(112)
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where

E(z) = diag|zy, 25,23,

1, = diag (b—a)ie—aT—M,(b—a)(—ie)—a;b,—a;b},

)

T, = diag|(a+b) + (b — a)ic, (a + b) + (b — a)(—ic), (a + b)),

i 2 2 N2 2 2 o
= diag a7 i€(1+4€2)<bza> b (16)(1+462)<b2a) Jab— (b2a> ]

2
11 = diag 0,0, “)]; I1s = diag[1/8,1/8,—1/2],

8
_ (113)
then
() =J, +Jr+J5 + . (114)
Integration of Eq. (110) yields
B(z) = v[Z(z) — x(2)A(z )l (N +N) " (ipy) + v[E(Z) —x ' A(z0)Z@) (N +N) ™ (ip})
— o' A(z;€)(E(z) — Ty — MaJo™ (N +N) ' (ip3) — oY1 (z: v (N +N)~'i(p} + p3)
— 0Ya(z €)™ (N +N) " (ip}) + (I} + I 15 + Ma)o™ (N +N) ™' (ip3)]
+oYs(2) e (N +N) ™ (ip3), (115)
where
Yi(z;€) = diag {u (z—a)" 5 F, (1.5 —ie,—0.5 — i€, 2.5 — e, ﬂ)
1.5 —ie b—a
("_I?il (z —a)" SR, (1.5 +ie, —0.5 +ie, 2.5 + ie, Z = ‘;)
(z—a)(z—b)(z—a+z—b)/4},
Y(z;€) = diag [(“(;Sb)__o: (z— )" F, (o.s —ie,0.5 — e, 1.5 — e, %) (116)

—_b —0.5—i¢ ) ) ) . _
% (z— a)O'SHEZFl (0.5 +1€,0.5 +1¢, 1.5 + 16,%) , O] ,

Yi(z,) :diag{\/(zl —a)(zy = b)(zs —a+z1 —b)/4,\/(z2 —a)(zo — b)(za —a+2z, — b) /4,
& —a)z—b) (s —atz— b)/4},

in which, ,Fi(o,;7:2) is a generalized hypergeometric function with o =0.5 —ie, o =0.5 — i,
7= (Lebedev, 1972).

n=15—1i¢ z=
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Appendix C. Solution to the thermal-dislocation of bi-media
From the boundary condition (65); > along the interface, one can obtain

Re{ 9ot + ('Ilr_:|:Re|: 92 }
X

X1 =20 X1 —Zy0 1 — 20

J g g (117)
kIIm O + It = kHIm — 1 .
[(xl —z0) (x1 — 210)2] (1 — za)°
Differentiation of (117); with respect to x; gives
Re|—0e 4 D= | _Re| T | (118)
(x1 —2z0)" (%1 —Zo0) (1 — z:0)
Solving Egs. (117), and (118) leads to
ki — ki 2y (119)

9. = kl 4 k[[ o5 9y = mq(}r'
The boundary condition (65); 4 along the interface yields:

3

> {[Ailog(x1 — zaw )T + A1 108(x1 — Zaoe) kG a) + [Arlog(x1 — Zaok) gy + A1 10g(x1 — za0) 1]}
1

+ [Arlog(x1 — z:0)q1q. + Arlog(x1 —Z:0)G1q:] + [Crlog(xi — z:0)go. + Crlog(xi —Z:0)Go]
3
+[Cilog(xi — Z0)q;, + Cilog(xi — z0),.] = > [Au10g(x1 — Zaok)ga + An log(x1 — Zaoe) o]
1

+ [Au log(x1 — Z:0)a4, + A 10g(xX1 = 2:0)Gag.] + [Cuilog(x1 — z:0)qs, + Culog(xi — 2:0)q,7;
3

> A[Bilog(xi — za)Idao + Brlog(xi — Zaoe) ko] + [Bilog(xi — Zaoe )y + Brlog(x — zaoe)qyl}
1

+ [Bilog(x1 — z:0)q14. + Bilog(x1 — Z:0)Gy4) + [Drlog(x1 — z:0)qo. + Dilog(x1 — Z:0)g]
3

+ [Dilog(xi —Zx0)gy. + Dilog(xi — 2:0)@1.]) = > [Bulog(xi — zaoe) oy + Bulog(x1 — Zaoi) 7]
1

+ [Bulog(x1 — Z:0)qag, + Bulog(xi — 2:0)qs4) + [Dulog(x1 — 2:0)q5, + Du log(x1 — Z:0)qy,)-
(120)

Following two sets of equations can be derived by grouping the coefficients of terms log(x; — z4k), and
log(x; — z4) in the above equation:

— A1y + Augy, = Adiq 9, (121)
- EI?M + Bugy = Biliqa

and

A1qy1 4. — AnGarge = Cuga, — C1gy, — Cigy, (122)
B1q14. — BuGg. = Dugs, — Digy, — D1y,
Egs. (121) and (122), respectively, give

Bigy, = N[-N""+ 2L "|Biliq,9, Bugy = 2NLi'Biliqy (123)
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and
Big,4. = N[M;IID +1Clqy,,  Buga, = _N[ili D+ ia%w (124)
where
2ky ky — ki — 2ky ki — kn—
C = Cn — ¢ —-C, D= Dy — Dy — Dy. 125
ky + kn ! ky + kn ! ! ky + kn " ki + kn ! ! (125)

Appendix D. Proof y = 0 for ”quasi-bi-materials” (same ‘“‘basic” material but different fiber orientations for
the two phases)

It is easily to show SL™! is antisymmetric. Actually, from the definition of matrices S, L and using Eq.
(109)

, 11 BB B B!

SL™' =i(24B" — I)(—2iBB") " = — —AB' = — -

= —[st7". (126)
It follows that W= S|L; — S,L, is antisymmetric.
If x5 is an axis of material symmetry, then the third components of the first and second vector in matrix

A and B are zero, so are the first and second component of the third vector. Therefore, the matrix SL!can
only has the following form

LS —il) = —L7's"

0 » 0
SL'=|-b 0 0. (127)
0 0 d
Hence,
0 blcos(w)” +sin(w)’] 0
Soly' =Q'S1QIQ"L QI = QTSILT'Q = | —b[cos(w)’ + sin(w)] 0 0|=S8.L".
0 0 d

(128)

This shows that I is a null matrix, then it follows that the bi-material parameter ¢ = 0.0 by definition of W.
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