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Abstract

An interface crack or delamination may often branch out of the interface in a laminated composite due to thermal
stresses developing around the delamination/crack tip when the media is exposed to heat flow induced by environmental
events such as a sudden short-duration fire. In this paper, the thermo-elastic problem of interface crack branching in dis-
similar anisotropic bi-media is studied by using the theory of Stroh�s dislocation formalism, extended to thermo-elasticity
in matrix notation. Based on the complex variable method and the analytical continuation principle, the thermo-elastic
interface crack/delamination problem is examined and a general solution in compact form is derived for dissimilar aniso-
tropic bi-media. A set of Green�s functions is proposed for the dislocations (conventional dislocation and thermal dis-
location/heat vortex) in anisotropic bi-media. These functions may be more suitable than those which have appeared
in the literature on addressing thermo-elastic interface crack branching in dissimilar anisotropic bi-materials. Using
the contour integral method, a closed form solution to the interaction between the dislocations and the interface crack
is obtained. Within the scope of linear fracture mechanics, the thermo-elastic problem of interface crack branching is
then solved by modelling the branched portion as a continuous distribution of dislocations. The influence of thermal
loading and thermal properties on the branching behavior is examined, and criteria for predicting interface crack branch-
ing are suggested, based on the extensive numerical results from the study of various cases.
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1. Introduction

Interface cracking may occur along the interface of two dissimilar media and could be one of the cata-
strophic failure modes for these materials. A common form of interface cracking is a delamination or a
debond in laminate composite or sandwich structures. Williams (1959) employed an eigenfunction expan-
sion method to study the stress distribution around the interface crack tip for a bi-material media consisting
of two dissimilar isotropic infinite half planes and obtained a stress singularity in the form r�

1
2�i�, i.e. a solu-

tion of oscillating character. Since this pioneering work, many researchers contributed lots of effort and
many useful studies have been published both for isotropic and anisotropic bi-material media. In particular,
by using the Muskhelishvili�s (1953) formalism, Erdogan (1963) obtained in 1963 a solution for several
cracks aligned along the interface of a dissimilar isotropic bi-material media. England (1965) reconsidered
this problem and quantitatively addressed the oscillatory character of an interface crack by focusing on the
range of limits in which possible overlapping may occur. Rice and Sih (1965) studied in 1965 this problem
by combining Muskhelishvili�s (1953) complex-variable method with an eigenfunction expansion and for-
mulated an expression for the stress intensity factors, as well as proposed a possible criterion for the inter-
face crack growth. Suo and Hutchinson (1990) used in 1990 a dislocation distribution technique and
supposition method to study a semi-infinite interface crack between the interface of two isotropic elastic
layers. Extensive data were given in Suo and Hutchinson (1990) for practical application.

Clements (1971) started the investigation for dissimilar anisotropic bi-material media by using Stroh�s
sextic formalism (1958), then Willis (1971) using the Fourier transform method reconsidered this problem.
Later on, Ting (1986) studied the asymptotic property of the interface crack in dissimilar anisotropic media
by using an assumed stress function form and Qu and Li (1991) addressed this problem by applying the
continuous interface dislocation distribution technique with real matrix notation.

It has been increasingly realized that the study of interface cracking can have significant practical interest
due to the recently increasing use of laminated and sandwich composites in aerospace and marine struc-
tures, and the use of thin film structures in electronic packaging and computer components such as circuit
board, etc. All these structures or devices often work in hostile environment where local temperature gra-
dient fields are often experienced. A practical case of rapid built-up of thermal field gradients is when a
loaded structure is exposed to fire on one side.

Studies on the influence of thermal loading on interface cracks can be traced from the 1960s. Several
papers have been published on this subject such as Barber and Comninou (1982, 1983); Martin-Moran
et al. (1983) and Chao and Shen (1993), etc.; these studies were, however, for isotropic bi-media; Atkinsion
and Clements (1983) began to address the thermo-elastic interface crack problem for anisotropic bi-mate-
rial media consisting of two dissimilar infinite half spaces. Later on, Hwu (1992) reconsidered the similar
thermo-elastic interface crack problem in some details by employing the identities developed by Ting
(1988). Choi and Thangjitham (1993) studied the interlaminar crack in laminated anisotropic composites
by the Fourier integral transform technique; Herrmann and Loboda (2001) extended the Comninou
(1977) contact model for interface cracks of dissimilar anisotropic bi-material media.

In contrast to the interface crack/delamination problems, the thermo-elastic interface crack branching
problem in dissimilar bi-materials has received little attention. Our literature search revealed no analytical
work on this problem. But, an interface delamination may easily branch out of the interface due to severe
stress concentrations around the crack tip, especially the severe thermal stress concentrations when the
structure is exposed to heat flow with or without mechanical loading. Therefore, the thermo-elastic inter-
face crack branching phenomenon for dissimilar anisotropic bi-material media needs further investigations.
The purpose of this paper is to analyze this phenomenon in terms of the dislocation theory (Eshelby et al.,
1953).

The work presented in this paper is organized in the following way. In terms of the extended Stroh�s
(1958) anisotropic elasticity formulation (summarized in Appendix A), a general solution for a thermo-elas-
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tic interface delamination is first formulated by using the analytical continuation principle of complex func-
tions. The procedure is similar to the one in Li and Kardomateas (2005).

Then, expressions for the thermal dislocation [thermal vortex, Dundurs and Comninou (1979)] and the
conventional (or mechanical) dislocation, located in either of the bi-material components, are presented. To
satisfy the continuation condition along the interface, a term accounting for the mixed thermal and
mechanical interaction is introduced into these expressions. Then, a closed form solution is derived for
the thermo-elastic interaction between the interface crack and the dislocation. Sub-sequentially, the
branched crack is modelled by a continuous distribution of dislocations and a set of coupled singular int-
egral equations in terms of the heat vortex density and the mechanical dislocation density is obtained. Sub-
sequently, the strain energy release rate for the crack-kinked body is calculated and by maximizing it, the
angle in favor of crack branching into one of the bi-material media can be found. Finally, several cases are
numerically simulated to illustrate the thermal loading influence on the onset of interface crack branching
and some important conclusions are drawn with regard to the criteria for the prediction of thermo-elastic
crack/delamination branching in dissimilar anisotropic bi-material media.
2. A general solution to thermo-elastic interface crack in bi-media

The thermo-anisotropic elasticity in Stroh�s formulation (1958) is summarized in Appendix A. In this
section, the derivation of a general solution to the interface crack with thermal loading will be given by
employing the complex variables method and the analytic continuity principle. A closed form solution
to constant applied loading also will be given in this section.

2.1. A solution to the interface crack of anisotropic medium under thermo-mechanically combined loading

Let the medium I occupy the upper half space (denoted by L) and the medium II occupy the lower half
space (denoted by R) (Fig. 1), then from Eq. (100) and (107) (Appendix A) one can have following expres-
sion for the bi-media:
uI ¼ AI/IðzaÞ þ AI/IðzaÞ þ CI vIðzsÞ þ CI vIðzsÞ;
uI ¼ BI/IðzaÞ þ BI/IðzaÞ þDI vIðzsÞ þDI vIðzsÞ;
T I ¼ v0IðzsÞ þ v0IðzsÞ; hI2 ¼ �ikI v00I ðzsÞ þ ikI v00I ðzsÞ;

ð1Þ
X1

‘a’ ‘b’

X2

0q

0q

I/L

II/R

Fig. 1. A thermo-elastic interface crack between dissimilar anisotropic bi-media.
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where uI, uI, TI are displacement, stress function and temperature fields for za 2 L
uII ¼ AII/IIðzaÞ þ AII/IIðzaÞ þ CIIvIIðzsÞ þ CIIvIIðzsÞ;
uII ¼ BII/IIðzaÞ þ BII/IIðzaÞ þDIIvIIðzsÞ þDIIvIIðzsÞ;
T II ¼ v0IIðzsÞ þ v0IIðzsÞ; hII2 ¼ �ikIIv00IIðzsÞ þ ikIIv00IIðzsÞ;

ð2Þ
where uII, uII, TII are displacement, stress function and temperature fields for za 2 R.
For the convenience of writing, the symbols �I� and �II�, denoting the quantities to medium �L� and �R�,

respectively, may be put as subscripts or subscripts. The interface crack is assumed to be located in the re-
gion a < x1 < b, �1 < x3 < 1 of the plane x2 = 0. A heat flux h0 and r1

i2 ¼ pi is applied at infinity (Fig. 1).
By the superposition principle and making use of Eq. (106)2 in Appendix A, the boundary conditions for

this problem can be written for the interface rack region (a < x1 < b, x2 = 0) as
hI2þðx1Þ ¼ �h0ðx1Þ; hII2�ðx1Þ ¼ �h0ðx1Þ;
u0I

þðx1Þ ¼ u0II
� ðx1Þ ¼ �pðx1Þ.

ð3Þ
Along the interface outside the crack (x1 < a and b < x1, x2 = 0):
uIþðx1Þ ¼ uII�ðx1Þ; u0I
þðx1Þ ¼ u0II

� ðx1Þ;
T I

þðx1Þ ¼ T II
�ðx1Þ; hI2þðx1Þ ¼ hII2�ðx1Þ;

ð4Þ
and at infinity
hI2 ¼ hII2 ¼ 0; rI
ij ¼ rII

ij ¼ 0; ð5Þ
where the convention /(x1,x2) = /±(x1) as x2 ! 0± for any function /(x1,x2) was used and will be
employed in the following sections.

The temperature continuity condition (4)3 along the bonded interface gives
v0Iþðx1Þ þ v0I�ðx1Þ ¼ v0II�ðx1Þ þ v0IIþðx1Þ; or

v0Iþðx1Þ � v0IIþðx1Þ ¼ v0II�ðx1Þ � v0I�ðx1Þ.
ð6Þ
One can define a function as
hðzÞ ¼
v0IðzÞ � v0IIðzÞ; z 2 L;

v0IIðzÞ � v0IðzÞ; z 2 R

�
ð7Þ
which is analytical in the whole plane cut along the a < x1 < b, then Eq. (6) is automatically satisfied. The
heat flux continuity condition (4)4 along the bonded interface gives
kI½v00Iþðx1Þ � v00I�ðx1Þ� ¼ kII½v00II�ðx1Þ � v00IIþðx1Þ�; or

kIv00Iþðx1Þ þ kIIv00IIþðx1Þ ¼ kIIv00II�ðx1Þ þ kIv00I�ðx1Þ.
ð8Þ
Then a function can be defined as
HðzÞ ¼
kIv00I ðzÞ þ kIIv00IIðzÞ; z 2 L;

kIIv00IIðzÞ þ kIv00I ðzÞ; z 2 R

�
ð9Þ
which is analytical in the whole plane cut along the a < x1 < b, Eq. (8) is automatically satisfied. Solving
Eqs. (7) and (9) gives for z 2 L:
kIv00I ðzÞ ¼ ½kIHðzÞ þ kIkIIh
0ðzÞ�=½kI þ kII�;

kIIv00IIðzÞ ¼ HðzÞ � ½kIHðzÞ þ kIkIIh
0ðzÞ�=½kI þ kII�;

ð10Þ
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and for z 2 R:
kIIv00IIðzÞ ¼ ½kIIHðzÞ þ kIkIIh
0ðzÞ�=½kI þ kII�;

kIv00IIðzÞ ¼ HðzÞ � ½kIIHðzÞ þ kIkIIh
0ðzÞ�=½kI þ kII�.

ð11Þ
Substituting Eq. (10) and (11) in condition (3)1,2, one can obtain
1

kI þ kII
½kIHþðx1Þ þ kIkIIh

0
þðx1Þ� �H�ðx1Þ þ

1

kI þ kII
½kIH�ðx1Þ þ kIkIIh

0
�ðx1Þ� ¼ �ih0ðx1Þ;

1

kI þ kII
½kIIH�ðx1Þ þ kIkIIh

0
�ðx1Þ� �Hþðx1Þ þ

1

kI þ kII
½kIIHþðx1Þ þ kIkIIh

0
þðx1Þ� ¼ �ih0ðx1Þ.

ð12Þ
Subtraction of Eq. (12)1 from Eq. (12)1 yields
Hþðx1Þ �H�ðx1Þ ¼ 0; ð13Þ
which implies the function H(z) is also continuous along the region a < x1 < b. Therefore this function is
continuous along the whole interface.

By the statement of analytical continuation principle (Rudin, 1987), the function H(z) should be analyt-
ical on the whole plane. But by Liouville�s theorem (Rudin, 1987), this function H(z) must be a constant
function in the whole domain. However, the condition in Eq. (5)1 imposes that this function should vanish
at infinity. Therefore, this constant function must be identical to zero in the whole plane, i.e.
HðzÞ ¼ 0; for all z. ð14Þ
Hence, following equations can be obtained from (9):
v00IIðzÞ ¼ � kI
kII

v00I ðzÞ; z 2 L; v00I ðzÞ ¼ � kII
kI

v00IIðzÞ; z 2 R. ð15Þ
If the temperature field induced by the heat flux at the interface crack tends to zero at infinity, then inte-
gration of Eq. (15) gives:
v0IIðzÞ ¼ � kI
kII

v0IðzÞ; z 2 L; v0IðzÞ ¼ � kII
kI

v0IIðzÞ; z 2 R. ð16Þ
Further integration of Eq. (16) leads to
vIIðzÞ ¼ � kI
kII

vIðzÞ; z 2 L; vIðzÞ ¼ � kII
kI

vIIðzÞ; z 2 R; ð17Þ
where a constant contributing to rigid body motion is dropped. Eq. (7) turns to
hðzÞ ¼
1þ kI

kII

h i
v0IðzÞ; z 2 L;

1þ kII
kI

h i
v0IIðzÞ; z 2 R.

8><>: ð18Þ
Then both Eq. (12)1 and (12)2 become
h0þðx1Þ þ h0�ðx1Þ ¼ � kI þ kII
kIkII

ih0ðx1Þ; a < x1 < b. ð19Þ
The displacement continuity along the bonded interface gives
AI/Iþðx1Þ þ AI/I�ðx1Þ þ CIvIþðx1Þ þ CIvI�ðx1Þ ¼ AII/II�ðx1Þ þ AII/Iþðx1Þ þ CIIvII�ðx1Þ þ CIIvIIþðx1Þ
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or
AI/Iþðx1Þ � AII/IIþðx1Þ þ CIvIþðx1Þ � CIIvIIþðx1Þ
¼ AII/II�ðx1Þ � AI/I�ðx1Þ þ CIIvII�ðx1Þ � CIvI�ðx1Þ. ð20Þ
Define the function
UðzÞ ¼ AI/IðzÞ � AII/IIðzÞ þ CIvIðzÞ � CIIvIIðzÞ; z 2 L;

AII/IIðzÞ � AI/IðzÞ þ CIIvIIðzÞ � CIvIðzÞ; z 2 R

(
ð21Þ
or
UðzÞ ¼ AI/IðzÞ � AII/IIðzÞ þ ½kIICI þ kICII�vIðzÞ=kII; z 2 L;

AII/IIðzÞ � AI/IðzÞ þ ½kICII þ kIICI�vIIðzÞ=kI; z 2 R;

(
ð22Þ
where Eq. (16) was used.Differentiation of Eq. (22) and making use of (18) yields
U0ðzÞ ¼
AI/

0
IðzÞ � AII/

0
IIðzÞ þ e1hðzÞ; z 2 L;

AII/
0
IIðzÞ � AI/

0
IðzÞ þ e1hðzÞ; z 2 R;

(
ð23Þ
where e1 ¼ ½kIICI þ kICII�=½kI þ kII� is a constant vector. Similarly, stress continuity on the bonded interface
leads to:
BI/
0
Iþðx1Þ þ BI/

0
I�ðx1Þ þ DIv

0
Iþðx1Þ þ DIv

0
I�ðx1Þ ¼ BII/

0
II�ðx1Þ þ BII/

0
IIþðx1Þ þ DIIv

0
II�ðx1Þ þ DIIv

0
IIþðx1Þ
or
BI/
0
Iþðx1Þ � BII/

0
IIþðx1Þ þ DIv

0
Iþðx1Þ � DIIv

0
IIþðx1Þ

¼ BII/
0
II�ðx1Þ � BI/

0
I�ðx1Þ þ DIIv

0
II�ðx1Þ � DIv

0
I�ðx1Þ. ð24Þ
A function which automatically satisfies the condition (24) can be defined as:
xðzÞ ¼
BI/

0
IðzÞ � BII/

0
IIðzÞ þ e2hðzÞ; z 2 L;

BII/
0
IIðzÞ � BI/

0
IðzÞ þ e2hðzÞ; z 2 R.

(
ð25Þ
This function is analytical on the whole plane except the cut along the interface crack and in which
e2 ¼ ½kIIDI þ kIDII�=½kI þ kII� is a constant vector. From Eq. (22) and (25), one can obtain
BI/
0
IðzÞ ¼ iN ½U0ðzÞ � e1hðzÞ� þ NM

�1

II ½xðzÞ � e2hðzÞ�;
BII/

0
IIðzÞ ¼ BI/

0
IðzÞ � xðzÞ þ e2hðzÞ

ð26Þ
for z 2 L;
BII/
0
IIðzÞ ¼ iN ½U0ðzÞ � e1hðzÞ� þ NM

�1

I ½xðzÞ � e2hðzÞ�;
BI/

0
IðzÞ ¼ BII/

0
IIðzÞ � xðzÞ þ e2hðzÞ

ð27Þ
for z 2 R. Substituting Eq. (26) and (27) into the condition (3)3,4, respectively, gives:
BI/
0
Iþðx1Þ þ BII/

0
II�ðx1Þ � x�ðx1Þ þ e2h�ðx1Þ þ

kII
kI þ kII

½DIhþðx1Þ � DIh�ðx1Þ� ¼ �pðx1Þ;

BII/
0
II�ðx1Þ þ BI/

0
Iþðx1Þ � xþðx1Þ þ e2hþðx1Þ þ

kI
kI þ kII

½DIIh�ðx1Þ � DIIhþðx1Þ� ¼ �pðx1Þ;
ð28Þ
where Eqs. (16) and (18) are used.
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Subtraction of Eq. (28)2 from (28)1 yields
xþðx1Þ � x�ðx1Þ ¼ 0 ð29Þ
which means that the x(z) is continuous on the whole interface. By a similar argument as the one used in
obtaining Eq. (14), one can conclude that
xðzÞ ¼ 0; for all z. ð30Þ
Either Eq. (28)1 or (28)2 leads to
U0
þðx1Þ þ N�1NU0

�ðx1Þ ¼ iN�1½pðx1Þ þ .1hþðx1Þ þ .2h�ðx1Þ�; a 6 x1 6 b; ð31Þ
where
.1 ¼
kII

kI þ kII
DI � N ½ie1 þM

�1

II e2�; .2 ¼
kI

kI þ kII
DII � N ½ie1 þM

�1

I e2�; N�1 ¼ M�1
I þM

�1

II . ð32Þ
The general solutions to Eqs. (19) and (31) can be obtained by employing the contour integral technique
(Muskhelishvili, 1953). These solutions read, respectively, as (Appendix B):
h0ðzÞ ¼ � kI þ kII
2pkIkII

xðzÞ
Z b

a

x�1
þ ðx1Þh0ðx1Þ

x1 � z
dx1 þ P ðzÞ

� �
; ð33Þ

U0ðzÞ ¼ 1

2p
xðzÞ

Z b

a

x�1
þ ðx1Þ
x1 � z

N�1½pðx1Þ þ .1hþðx1Þ þ .2h�ðx1Þ�dx1 þ QðzÞ
� �

; ð34Þ
where P(z) and Q(z) are polynomial of z with degree less than one,
xðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p ; XðzÞ ¼ vxðzÞDðz; �Þ; Dðz; �Þ ¼ diag
z� b
z� a

� �i�

;
z� b
z� a

� ��i�

; 1

" #
ð35Þ
and
v ¼ ½v1; v2; v3�; ð36Þ

in which, vj (j = 1,2,3) is the eigenvectors of equation:
ðN þ e2pidNÞv ¼ 0. ð37Þ

The matrix N can be expressed in terms of a symmetric matrix D and anti-symmetric matrix W as Ting
(1986):
N�1 ¼ D� iW ; D ¼ L�1
1 þ L�1

2 ; W ¼ S1L�1
1 � S2L�1

2 . ð38Þ

An explicit solution to eigenvalues of Eq. (37) is
d1 ¼
1

2
þ i�; d2 ¼

1

2
� i�; d2 ¼

1

2
; with � ¼ 1

2p
log

1þ c
1� c

� �
; c ¼ � 1

2
trðD�1W Þ2

� �1
2

. ð39Þ
It can be seen that once the applied loading h0(x1) and p(x1) is given, then the solution to the functions h(z)
and U(z), hence fields functions vj(z) and /j(z) (j = �I� and �II�) can be found. Therefore, a general solution to
the thermo-elastic interface crack problem of dissimilar bi-media is then obtained. The stresses ri2 = u 0

ahead of the interface crack read
½r12; r22; r32�T ¼ u0 ¼ N �U0ðx1Þ � e�hðx1Þ; x1 < a or b < x1; ð40Þ
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where
N � ¼ iðN þ NÞ; e3 ¼
kIIDI þ kIDII

kI þ kI
;

e� ¼ iðNe1 þ Ne1Þ � ðNM�1
I e2 � NM

�1

I e2Þ þ e2 þ e3

ð41Þ
and the crack open displacements (COD) can be delivered after some tedious manipulation:
Du ¼ uIþðx1Þ � uII�ðx1Þ ¼ Uþðx1Þ � U�ðx1Þ; a 6 x1 6 b. ð42Þ
2.2. Solution for the constant applied loading

If the applied loading on the crack interface is constant, i.e. h0(x1) = h0 and p(x1) = p0, then by contour
integration Eq. (1) leads to
h0ðzÞ ¼ �i
ðkI þ kIIÞh0

2kIkII
1� z� ðaþ bÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p" #

. ð43Þ
Integration of Eq. (43) gives
hðzÞ ¼ �i
ðkI þ kIIÞh0

2kIkII
z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

ph i
; ð44Þ
where the integral constant is dropped. The stress function can be found from (34) and it reads:
U0ðzÞ ¼ v½/1ðzÞv�1ðN þ NÞ�1ðip0Þ þ /2ðzÞv�1ðN þ NÞ�1ðip�1Þ þ /3ðzÞv�1ðN þ NÞ�1ðip�2Þ�; ð45Þ

where
/1ðzÞ ¼ I � xðzÞDðz; �Þ½NðzÞ þP1�;
/2ðzÞ ¼ NðzÞ � xðzÞDðz; �Þ½Nðz2Þ þP1NðzÞ �P2� þ xðzÞP5;

/3ðzÞ ¼ x�1ðzÞ � xðzÞDðz; �Þ½Nðz2Þ �P3NðzÞ þP4� þ xðzÞP6

ð46Þ
and Pk (k = 1 to 6) are defined in (113).
If the constant which only contributes rigid body motion is omitted, integration of the above function

gives (Appendix B):
UðzÞ ¼ v½NðzÞ � x�1ðzÞDðz; �Þ�v�1ðN þ NÞ�1ðip0Þ þ v½Nðz2Þ � x�1Dðz; �ÞNðzÞ � Y 1ðz; �Þ

� Y 2ðz; �ÞP2�v�1ðN þ NÞ�1ðip�1Þ þ v½Y 3ðzÞ � x�1Dðz; �ÞðNðzÞ � eP1Þ � Y 1ðz; �Þ

� Y 2ðz; �Þ eP2�v�1ðN þ NÞ�1ðip�2Þ; ð47Þ
where
eP1 ¼ diag
aþ b
2

þ ðb� aÞi�; aþ b
2

� ðb� aÞi�; aþ b
2

� �
;

eP2 ¼ diag
b2 � a2

2
i�� ð1þ 4�2Þ ðb� aÞ2

2
; � b2 � a2

2
i�� ð1þ 4�2Þ ðb� aÞ2

2
; �ðb� aÞ2

2

" #
;

ð48Þ
N(z), Y1(z; �), Y2(z;�) and Y3(z) are matrix functions defined in Appendix B. Once the temperature potential
and stress functions are found, the heat flux and stress field for this bi-media can be readily obtained. Here-
in is given the heat flux for the upper medium of this bi-material:
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hc1ðx1; x2Þ ¼ �Re 1�
z� aþb

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p !
s

" #
h0;

hc2ðx1; x2Þ ¼ Re 1�
z� aþb

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p" #
h0

ð49Þ
and the stress fields for the upper medium read as
½r11; r21; r31�T1c ¼ �2Re½iNv � pa � v�1U0ðzÞ � iDcshðzÞ�;
½r11; r21; r31�T2c ¼ 2Re½iNU0ðzÞ � iDchðzÞ�;

ð50Þ
where
Dc ¼ iNe1 þ NM
�1

II e2 � DI
kII

kI þ kII
. ð51Þ
The COD for this case can then be expressed as
Duðx1Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðb� x1Þ

p
coschð�pÞfu1ðx1; �Þ½p0 þ x1ðp�1 þ p�2Þ � eP1p�2� þ

aþ b� 2x1
8

ðN þ NÞ�1p�2g;

ð52Þ

where
u1ðx1; �Þ ¼ vdiag
b� x1
x1 � a

� �i�

;
b� x1
x1 � a

� ��i�

; cosch�1ð�pÞ
" #

v�1ðN þ NÞ�1. ð53Þ
The traction ahead of the crack tip may then given by
tðx1Þ ¼ ½r12; r22; r32�T ¼ N �U0ðx1Þ � e�hðx1Þ

¼ N �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðx1 � bÞ

p v ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðx1 � bÞ

p
I� Dðx1;�ÞðNðx1Þ þP1Þ�v�1ðN þ NÞ�1ðip0Þ

n
þ½x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðx1 � bÞ

p
i� Dðx1;�ÞðNðx21Þ þ x1P1 �P2Þ þP5�v�1ðN þ NÞ�1ðip�1Þ

þ½ðx1 � aÞðx1 � bÞi� Dðx1;�ÞðNðx21Þ � x1P3 þP4Þ þP6�v�1ðN þ NÞ�1ðip�2Þ
o

� e�½x1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðx1 � bÞ

p
�h�0; ð54Þ
the notations P1, P2, P3, P4, P5 and P6 are defined in Appendix B and I = diag[1, 1, 1]. The conventional
Stress Intensity Factors (SIFs) ahead the crack tip such as for x1 = b may be expressed as
½KII;KI;KIII�T ¼ lim
x1!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
½r12; r22; r32�T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� aÞ

p
N �v lim

x1!b
Dðx1; �Þ½k1v�1ðN þ NÞ�1ðip0Þ þ k2v�1ðN þ NÞ�1ðip�1Þ

þ k3v�1ðN þ NÞ�1ðip�2Þ�; ð55Þ
where
k1 ¼ �diag
1

2
þ i�;

1

2
� i�;

1

2

� �
;

k2 ¼ ðb� aÞdiag �2 � bþ a
4ðb� aÞ � bi�; �2 � bþ a

4ðb� aÞ þ bi�;� bþ a
4ðb� aÞ þ

1

8

� �
;

k3 ¼ ðb� aÞdiag½0.375þ �2 þ 2i�; 0.375þ �2 � 2i�;�0.25�.

ð56Þ
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Now the energy release rate G0 can also be calculated for this interface crack propagation. Assuming the
crack grow at crack tip �b� to �b + db�, G0 can be found from Eqs. (42), (47) and (54) as
G0 ¼ lim
db!0

1

2db

Z Db

0

duTðx1 � dbÞtðx1Þdx1. ð57Þ
For the simple case of the two media are identical, the explicit expressions for SIFs and the energy release
rate can be obtained, respectively, as
½KII;KI;KIII�T ¼ �Ref
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� aÞ

p
½k1p0 þ k2p�1 þ k3p�2�g;

G0 ¼ Re
pðb� aÞ

2
½pT0L�1p0 þ ðb� aÞpT0L�1ep�

1 þ pT0L
�1e�1h

�
0 þ bp�T1 L�1p0 þ bp�T1 L�1p̂�1=4�

� �
;

ð58Þ
where
p�T1 ¼ p�1diag½1; 1; 1�; ep1 ¼ p�1diag 1; 1;
3

2

� �
; p̂�1 ¼ p�1diag bþ a; bþ a;

bþ 3a
2

� �
. ð59Þ
If there is no applied mechanical loading, i.e p0 = [0, 0, 0]T, then Eq. (58) can be expressed as:
G0 ¼
pbðb� aÞ

8
p�T1 L�1p̂�1. ð60Þ
So far in this section, a solution as well as the method leading to the solution for a crack in a thermo-
mechanically loaded anisotropic medium was presented in details. And it can be seen that the general solu-
tion given here lays the foundation for the study of the branched thermo-elastic crack phenomena.
3. Green�s functions for thermo-elastic dislocations in anisotropic bi-media

When a dislocation (Stroh, 1958) is introduced into one of the elastic bi-media under thermal loading, a
temperature discontinuity (also called heat vortex, Dundurs and Comninou, 1979) is induced across the cut
plane associated with the conventional (or mechanical) dislocation. This concept of heat vortex first
appeared in literature several decades ago and has been studied by many authors, such as Sturla and Barber
(1988). But most of the functions of displacement and stress fields due to the heat vortex cannot be directly
extended to the dissimilar anisotropic media. To overcome this difficulty, mixed terms are adopted in the
expressions for displacement and stress functions. The functions of the heat vortex may be assumed for dis-
similar anisotropic bi-media (Fig. 2) as
X1

X2

0q

0q

r b
I/L

II/R
a b

η

ω
ξ

Fig. 2. A thermo-elastic dislocation in dissimilar anisotropic bi-medium.
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T d
I ¼ 2Re½q0s logðzs � zs0Þ þ q1s logðzs � zs0Þ�; z 2 L;

T d
II ¼ 2Re½q2s logðzs � zs0Þ�; z 2 R.

ð61Þ
The corresponding heat flux h2 can then be expressed as (Sturla and Barber, 1988):
hd2I ¼ 2kIIm
q0s

zs � zs0
þ q1s
zs � zs0

� �
; z 2 L; hd2II ¼ 2kIIIm

q2s
zs � zs0

� �
; z 2 R; ð62Þ
where q0s ¼ T
4pi, q1s and q2s are constants to be determined. The displacement and stress functions may then

take the form
udI ¼ 2Re½AI � logðza � zd0Þ � qd0� þ
X3
k¼1

AI � logðza � zd0kÞ � q1k

" #
þ 2Re½AI � ðlogðza � zs0Þ � 1Þðza � zs0Þ � q1ds�
þ 2Re½CIðq0sðlogðzs � zs0Þ � 1Þðzs � zs0Þ þ q1sðlogðzs � zs0Þ � 1Þðzs � zs0ÞÞ�;

/d
I ¼ 2Re½BI � logðza � zd0Þ � qd0� þ 2Re

X3
k¼1

BI � logðza � zd0kÞ � q1k

" #
þ 2Re½BI � ðlogðza � zs0Þ � 1Þðza � zs0Þ � q1ds�
þ 2Re½DIðq0sðlogðzs � zs0Þ � 1Þðzs � zs0Þ þ q1sðlogðzs � zs0Þ � 1Þðzs � zs0Þ�

ð63Þ
for upper half-space (x2 > 0) and
udII ¼ 2Re
X3
k¼1

AII � logðza � zd0kÞ � q2k

" #
þ 2Re½AII � ðlogðza � zs0Þ � 1Þðza � zs0Þ � q2ds�

þ 2Re½CIIðlogðzs � zs0Þ � 1Þðzs � zs0Þq2s�;

/d
II ¼ 2Re

X3
k¼1

BII � logðza � zd0kÞ � q2k

" #
þ 2Re½BII � ðlogðza � zs0Þ � 1Þðza � zs0Þ � q2ds�

þ 2Re½DIIðlogðzs � zs0Þ � 1Þðzs � zs0Þq2s�

ð64Þ
for lower half-space (x2 < 0), where qd0 ¼ 1
2piB

T
I b (Barber and Comninou, 1982). It should be mentioned the

mixed terms � ðlogðza � zs0Þ � 1Þðza � zs0Þ � and � ðlogðza � zs0Þ � 1Þðza � zs0Þ � were introduced to
reflect the interaction between the heat vortex and the conventional dislocation due to the mismatch of
the properties of the upper and lower media. This is very important in order to ensure the continuity of
the displacements and tractions along the interface of the dissimilar bi-materials. Substituting Eqs. (61)–
(64) into the boundary conditions along the interface,
T d
I ðx1; x2 ¼ 0þÞ ¼ T d

IIðx1; x2 ¼ 0�Þ; hd2Iðx1; x2 ¼ 0þÞ ¼ hd2IIðx1; x2 ¼ 0�Þ;
udI ðx1; x2 ¼ 0þÞ ¼ udIIðx1; x2 ¼ 0�Þ; /0d

I ðx1; x2 ¼ 0þÞ ¼ /0d
IIðx1; x2 ¼ 0�Þ;

ð65Þ
one can obtain (Appendix C):
q1s ¼
kI � kII
kI þ kII

q0s; q2s ¼
2kI

kI þ kII
q0s;

BIq1k ¼ Nð�N�1 þ 2L�1
I ÞBIIkqd0; BIIq2k ¼ 2NL�1

I BIIkqd0;

BIq1ds ¼ N ½M�1

II Dþ iC�q0s; BIIq2ds ¼ �N ½M�1

I Dþ iC�q0s.

ð66Þ
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The heat flux and stress fields can then be readily calculated. Following are these quantities for the upper
medium,
htd1I ¼ �2kIIm
q0s

zs � zs0
sþ q1s

zs � zs0
s

� �
;

htd2I ¼ 2kIIm
q0s

zs � zs0
þ q1s
zs � zs0

� � ð67Þ
and
½r11; r21; r31�tdTI1 ¼ �2Re
X3
k¼1

BI �
pa

za � zd0k
� Ikq0 þ BI �

pa
za � zd0k

� q1k

� �
þ 2Re½BI � pa logðza � zs0Þ � q1ds þ DIðs logðzs � zs0Þq0s þ s logðzs � zs0Þq1sÞ�;

½r12; r22; r32�tdTI2 ¼ 2Re
X3
k¼1

BI �
1

za � zd0k
� Ikq0 þ BI �

1

za � zd0k
� q1k

� �
þ 2Re½BI � logðza � zs0Þ � q1ds þ DIðlogðzs � zs0Þq0s þ logðzs � zs0Þq1sÞ�.

ð68Þ
The heat flux and tractions along the interface are, respectively:
hd2ðx1Þ ¼
4kIkII
kI þ kII

Im
q0s

x1 � zs0

� �
ð69Þ
and
tds ¼ ½r12;r22; r32�Tds

¼ 2Re
X3
k¼1

2

x1 � zd0k
NL�1

I BIIkqd0

� �
� logðx1 � zs0ÞNðM�1

I Dþ iCÞ � logðx1 � zs0Þ
2kI

kI þ kII
DII

� �
q0s

( )

¼ 2Re
X3
k¼1

2

x1 � zd0k
NL�1

I BIIkqd0

� �
þ logðx1 � zs0Þ½NðM�1

I D� iCÞ þ 2kI
kI þ kII

DII�q0s

( )
;

ð70Þ
where the relationship Re½1=ðx1 � zd0kÞ� ¼ Re½1=ðx1 � zd0kÞ� and Re½logðx1 � zs0� ¼ Re½logðx1 � zs0� are used.
4. Thermo-elastic interaction between the interface crack and the dislocations

Replacing the h0(x1) of Eq. (33)1 with �hd2ðx1Þ of Eq. 69, one can obtain a closed form solution for the
interaction temperature potential function, and this reads:
h0intðzÞ ¼
T
4p

½yðz; zs0Þ þ yðz; zs0Þ�; ð71Þ
where
yðz; zs0Þ ¼
1

z� zs0
½1� xðzÞx�1ðzs0Þ� � xðzÞ. ð72Þ
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Integrating Eq. (71) and dropping some constants yields
hintðzÞ ¼
T
4p

½eyðz; zs0Þ þ eyðz; zs0Þ� ð73Þ
with
eyðz; zs0Þ ¼ log
x�1ðzÞ þ x�1ðzs0Þ þ zs0 � aþb

2

� 	
ðz� zs0Þxðzs0Þ

z� aþb
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p" #
. ð74Þ
It can be seen that the interaction thermal potential function is not singular at the point z = zs0. Comparing
with the contribution from the term 1

z�zs0
for the onset of interface crake branching, the influence of function

hint(z) on the interaction stress functions, which can be obtained by replacing p(x1) of Eq. (33)2 with �tds of
Eq. (70), can be ignored. Therefore, the interaction stress functions can be obtained as
U0
intðzÞ ¼

X3
k¼1

½vYkðz; zd0k; �Þv�1ðN þ NÞ�1
Ak � vYkðz; zd0k; �Þv�1ðN þ NÞ�1

Ak�b; ð75Þ
where
Ykðz; zd0k; �Þ ¼� 1

z� zd0k
� i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzd0k � aÞðzd0k � bÞ

ðz� aÞðz� bÞ

s
Dðz; �ÞD�1ðzd0k; �Þ

" #
� Dðz; �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ;

Ak ¼ NL�1
I BIIkBT

I =p;

ð76Þ
and the following notation is employed:
Dðz; �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p ¼ diag ðz1 � bÞ�
1
2þi�ðz1 � aÞ�

1
2�i�

; ðz2 � bÞ�
1
2�i�ðz2 � aÞ�

1
2þi�

; ðz3 � bÞ�
1
2ðz3 � aÞ�

1
2

h i
. ð77Þ
By employing L�Hospital principle, one can easily show that the y(z, zs0) and Yk(z, zd0k; �) is not singular
when z ! zs and z ! zd0k, respectively.

The heat flux and stress fields induced by the interaction for the upper medium can then be written,
respectively, as
hint1 ¼ �2
kIkII

kI þ kII
Re½sh0intðzÞ�; hint2 ¼ 2

kIkII
kI þ kII

Re½h0intðzÞ� ð78Þ
and
½r11; r21; r31�int TI ¼ �2Re½iNv � pa � v�1U0
intðzÞ � iDintshintðzÞ�;

½r12; r22; r32�int TI ¼ 2Re½iNU0
intðzÞ � iDinthintðzÞ�;

ð79Þ
where Dint ¼ Dc.
5. Thermo-elastic interface crack branching in anisotropic bi-media

A main crack located at the a < x1 < b, x2 = 0 of coordinate system (x1,x2,x3) is assumed to branch
into x2 > 0 (or x2 < 0) at an angle h = x shown in Fig. 3, in which a new coordinate system (n,g,x3) is
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Fig. 3. A branched thermo-elastic interface crack in dissimilar anisotropic.
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introduced for the sake of convenience. Similarly to the conditions for the main crack, the boundary con-
ditions for this branched portion read in this new coordinate system as:
h2ðn; 0þÞ ¼ �hðnÞ; h2ðn; 0�Þ ¼ �hðnÞ;
½rngðn; 0þÞ; rggðn; 0þÞ; r3gðn; 0þÞ�T ¼ �pðnÞ; ½rngðn; 0�Þ; rggðn; 0�Þ; r3gðn; 0�Þ�T ¼ �pðnÞ.

ð80Þ
If the applied thermo-mechanical loading at infinity is constant, then:
hðnÞ ¼ h0 cosðxÞ; pðnÞ ¼
cosð2xÞ; 1

2
sinð2xÞ 0

� sinð2xÞ; cos2ðxÞ 0

0; 0 cosðxÞ
















p0; ð81Þ
where vector p0 = [r12, r22, r32]
T is the constant applied traction at infinity.Now let us consider the total

heat flux and traction at any point on the plane g = 0, i.e. h = x in the polar coordinates system
(r,h,x3), then by superposition:
htot2 ðn; 0Þ ¼ hchðr;xÞ þ hinth ðr;xÞ þ htdh ðr;xÞ;
ttotðn; 0Þ ¼ tchðr;xÞ þ tinth ðr;xÞ þ ttdh ðr;xÞ;

ð82Þ
where the superscript �c� and �td� denote the corresponding fields induced by the main crack and the ther-
mal-mechanical dislocations, respectively; �int� denotes the fields induced by the interaction between the
crack and the dislocation and �tot� is the summation from all contributions. It would be more convenient
for the calculation if the terms on the right sides of the Eqs. (82), expressed in the coordinate system
(x1,x2,x3), are transformed into the corresponding quantities in the coordinate system (r,h,x3) or the sys-
tem (n,g,x3). Following is the transformation relationship
h ¼ h2 cosðxÞ � h1 sinðxÞ;
t ¼ X2ðxÞ½r12; r22; r32�T � X1ðxÞ½r11; r21; r31�T;

ð83Þ
where
X2ðhÞ ¼
cos2ðhÞ 1

2
sinð2hÞ 0

� 1
2
sinð2hÞ cos2ðhÞ 0

0 0 cosðhÞ
















; X1ðhÞ ¼

1
2
sinð2hÞ sin2ðhÞ 0

�sin2ðhÞ 1
2
sinð2hÞ 0

0 0 sinðhÞ
















 ð84Þ
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and ri1 and ri2 are stresses measured in system (x1,x2,x3) and defined by Eq. (106); h1 and h2 are heat flux
measured in system (x1,x2,x3) and defined by Eq. (107). Then, each term of the right hand side of Eq. (82)
can be easily expressed in terms of the temperature potential functions and stress functions obtained in pre-
vious sections. If let l = cos(x) + ssin(x) and f = cos(x) + pasin(x), then zs = rl, zs0 = r0l, za = rf and
za0 = r0f. Therefore, one has:
hchðr;xÞ ¼ hc2ðrlÞ cosðxÞ � hc1ðrlÞ sinðxÞ;
hinth ðr;xÞ ¼ hint2 ðrlÞ cosðxÞ � hint1 ðrlÞ sinðxÞ;
htdh ðr;xÞ ¼ htd2 ðrlÞ cosðxÞ � htd1 ðrlÞ sinðxÞ

ð85Þ
and
tchðr;xÞ ¼ X2ðxÞ½r12; r22; r32�Tc � X1ðxÞ½r11; r21; r31�Tc ;
tinth ðr;xÞ ¼ X2ðxÞ½r12; r22; r32�Tint � X1ðxÞ½r11; r21; r31�Tint;
ttdh ðr;xÞ ¼ X2ðxÞ½r12; r22; r32�Ttd � X1ðxÞ½r11; r21; r31�Ttd.

ð86Þ
Without loss of generality, it can be assumed that the interface crack branches into the upper media. The
branched portion of the crack can be modelled by the continuous distribution of the dislocations with den-
sity T0(r0) = �dT0(r0)/dr0 and b(r0) = �db(r0)/dr0. Then the boundary condition (80) and Eq. (82) lead a
system of singular integral equations:
kI
2p

Z c

b

T 0

r � r0
dr0 þ

kI
2p

Z c

b
Ktðr; r0ÞT 0dr0 ¼ h0 cosðxÞ þ hchðr;xÞ; ð87Þ
where
Ktðr; r0Þ ¼ � kI � kII
k þ kII

Re
l

rl� r0l

� �
þ kII
kI þ kII

Re
1

r � r0
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0l� aÞðr0l� bÞ
ðrl� aÞðrl� bÞ

s !"

þ l
rl� r0l

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0l� aÞðr0l� bÞ
ðrl� aÞðrl� bÞ

s !
� 2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrl� aÞðrl� bÞ
p #

;

hchðr;xÞ ¼ h0Re l 1� rl� ðaþ bÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrl� aÞðrl� bÞ

p !" # ð88Þ
and
1

p

Z c

b

AbðxÞ
r � r0

bdr0 þ
1

p

Z c

b
Kbðr; r0Þbdr0 þ

1

2p

Z c

b
Kbtðr; r0ÞT 0 dr0 ¼ X2p0 þ tchðr;xÞ ð89Þ
in which
AbðxÞ ¼ Im X2BI �
1

f
� BT

I þ X1BI �
pa
f
� BT

I

� �
Kbðr; r0Þ ¼

X3
k¼1

Im

�
X2BI �

1

rf� r0fk
� B�1

I ðI � 2NL�1
I ÞBIIkB

T

I

þ X1BI �
pa

rf� r0fk
� B�1

I ðI � 2NL�1
I ÞBIIkB

T

I

� 2

p
X2NðvYkðrf; r0fk;�Þv�1ðN þ NÞ�1

Ak � vYkðrf; r0fk;�Þv�1ðN þ NÞ�1
AkÞ

�
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� 2

p
X1Nðv � pa � Ykðrf; r0fk;�Þv�1ðN þ NÞ�1

Ak

� v � pa � Ykðrf; r0fk;�Þv�1ðN þ NÞ�1
AkÞ;

Kbtðr; r0Þ ¼ X2Im½BI � logðrf� r0l � B�1
I NðM IIDþ iCÞ

þ DIðlogðrl� r0lÞ �
kI � kII
kI þ kII

logðrl� r0lÞÞ þ Dintðeyðrl; r0lÞ þ eyðrl; r0lÞÞ�
þ X1Im½BI � pa logðrf� r0l � B�1

I NðM IIDþ iCÞ

þ DIðlogðrl� r0lÞ �
kI � kII
kI þ kII

logðrl� r0lÞÞsþ Dintðeyðrl; r0lÞ þ eyðrl; r0lÞÞs�;

ð90Þ
where eI 1 ¼ diag½0; 1; 1�;eI 2 ¼ diag½1; 0; 1�;eI 3 ¼ diag½1; 1; 0�. Let
r ¼ ð1þ xÞl
2

; r0 ¼
ð1þ tÞl

2
; l ¼ c� b; ð91Þ
where, jxj < 1 and jtj < 1, then Eq. (87) and (89) may be rewritten as:
kI
2p

Z 1

�1

T 0

x� t
dt þ kI

2p

Z 1

�1

eKtðx; tÞT 0 dt ¼ h0 cosðxÞ þ hchðx;xÞ;

1

p

Z 1

�1

AbðxÞ
x� t

bdt þ 1

p

Z 1

�1

eKbðx; tÞbdt þ
1

2p

Z 1

�1

eKbtðx; tÞT 0 dt ¼ X2p0 þ tchðx;xÞ;
ð92Þ
where eKtðx; tÞ; eKbðx; tÞ and eKbtðx; tÞ are obtained by substituting (91) in Kt(r, r0), Kb(r, r0) and Kbt(r, r0), cor-
respondingly. This system of singular equations involves two unknowns, namely T0 and b, which are cou-
pled through the term eKbt in (92)2. One can let (Erdogan et al., 1973):
T 0 ¼ w1ðtÞTðtÞ; w1ðtÞ ¼ ð1þ tÞ�s1ð1� tÞ
1
2;

bðtÞ ¼ w2ðtÞbðtÞ; w2ðtÞ ¼ ð1þ tÞ�s2=ð1� tÞ
1
2.

ð93Þ
Since the heat vortex density at both ends of the crack branched potion is bounded and the singularity at the
intersection point of the main crack and the branched crack is of order less then 1

2
, then one can have s1 = �1/

2 and s2 = 1/2 (Li and Kardomateas, 2005). Therefore, by using Gauss–Chebvshev integration Eq. (92)1 can
be solved. Once the solution for T0 is obtained, substituting into (92)2 and using Gauss–Jacobi integration
formulas, the entire system of equations can be solved. Following a similar fashion as in Li andKardomateas
(2005), the numerical schemes for solving Eqs. (92)1 and (92)2 can be, respectively, written as
Xn

i¼1

1� t2i
nþ 1

TðtiÞ
1

ti � xk
� eKtðti; xkÞ

� �
¼ 2

kI
½h0 cosðxÞ þ hchðxk;xÞ�;

ti ¼ cos
ip

nþ 1

� �
ði ¼ 1; . . . ; nÞ; xk ¼ cos

p
2

2k � 1

nþ 1

� �
ðk ¼ 1; . . . ; nþ 1Þ.

ð94Þ
and
 Xn
i¼1

1

n
AbðxÞ
ti � xk

� eKbðti; xkÞ
� �

bðtiÞ ¼ �X2p0 � tchðxk;xÞ þ
1

2p

Z 1

�1

eKbtðxk; tÞT 0 dt;

Xn
i

p
n
bðtiÞ ¼ Du;

ti ¼ cos p
2i� 1

2n

� �
ði ¼ 1; . . . ; nÞ; xk ¼ cos

pk
n

� �
ði ¼ 1; . . . ; n� 1Þ;

ð95Þ
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where the second equation i.e. (95)2 comes from the condition
R 1

�1
bðtÞdt ¼ Du, which satisfies the continuity

of displacement at the intersection point between the main crack and the branched portion. For an approx-
imation, one may take

R 1

�1
bðtÞdt � 0. But for more accurate computation, one would use Eq. (52) to eval-

uate the Du by letting a = �(L + lcos (x))/2, b = (L + lcos(x))/2, and x1 = L/2, where �l� denotes the length
of the branched portion of the crack and �L� the length of the main crack. The integration of the third term
on the right hand side of (95)1 was performed by using Simpson�s rule. Since the nodes used in (94) and (95)
are different, the polynomial interpolations were also used to obtain the values of eKbtðx; tÞ and T0(t) from
nodes in (94) for those values which are needed for the nodes in (95)1.

The conventional stress intensity factors (SIFs) at the branched crack tip may be defined as
K ¼ ½KII;KI;KIII�T ¼ lim
r!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � lÞ

p
ttotðr;xÞ. ð96Þ
Using the technique given by Muskhelishvili (1953), the SIFs can be evaluated as
K ¼ lim
r!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � lÞ

p 1

p

Z 1

�1

AbðxÞ
x� t

w2ðtÞbðtÞdt þ
1

2p

Z 1

�1

eKbtðx; tÞw1ðtÞTðtÞdt
� �

¼
ffiffiffiffiffi
pl
2

r
AðxÞX0ðxÞbð1Þ; ð97Þ
where an elementary relationship limx!1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ

p
logðx� 1Þ ! 0 is employed, and
X0ðxÞ ¼
cosðxÞ sinðxÞ 0

� sinðxÞ cosðxÞ 0

0 0 1
















. ð98Þ
Once the onset of the branching of an interface crack happens, this crack usually propagates in one med-
ium. Therefore, the energy release rate may be approximated as stated in Barnett and Asaro (1972) by
GðxÞ ¼ 1

2
KTeL�1

K; eL ¼ XT
0 ðxÞLX0ðxÞ; ð99Þ
where �L� is the bi-material property matrix.
6. Numerical results

In this section, the influence of thermal loading on the delamination branching in composite bi-materials
will be demonstrated. Two typical Graphite Epoxy composites were used as �raw� or �basic� material in the
numerical simulation. The firstmaterial, calledmaterial-I was selectedwith thermo-elastic properties of:mod-
uli in GPa: EI

11 ¼ 5.69; EI
22 ¼ EI

33 ¼ 4.07; GI
21 ¼ 9.79; Poisson�s ratios: mI21 ¼ mI23 ¼ mI31 ¼ 0.01; thermal con-

ductivities in W/m/K: kI11 ¼ 42.1; kI22 ¼ kI33 ¼ 0.47; thermal expansion coefficients in m/m/K: aI11 ¼ 0.025
�10�6; aI22 ¼ aI33 ¼ 32.4� 10�6. Thermo-elastic properties of the second raw material (material-II) read as:
moduli in GPa: EII

11 ¼ 2.312; EII
22 ¼ EII

33 ¼ 5.17; GII
21 ¼ 0.174; Poisson�s ratios: mII21 ¼ mII23 ¼ mII31 ¼ 0.1; thermal

conductivities in W/m/K: kII11 ¼ 53.7; kII22 ¼ kII33 ¼ 0.73; thermal expansion coefficients in m/m/K: aII11 ¼
0.034� 10�6; aII22 ¼ aII33 ¼ 34.2� 10�6. The angles hI and hII define the angles between material principal axis
and the x1 axis for upper and lower medium, respectively. The unit axial tension r22 and unit heat flux q0 in x2
direction are considered to be the applied loading (Fig. 3).

Fig. 4 and 5 is the convergent illustration of the numerical scheme employed in Section 5. The bi-media
used here consists of material-I as the upper medium and material-II as the lower medium and its bi-mate-
rial parameter c, defined in Eq. (39), equals 0.0662693. Depicted in Fig. 4 are the Mode I (KI) and Mode II



150 300 450 600 750 900 1050 1200

1

 KI,  KII
 KI,  KII
,   N = 120

L/l

k/
(π

L)
1/

2 /
22σ

θΙ = π/6 θΙΙ = 2π/3

ω = π/3
ω = π/4

Fig. 4. Variations of stress intensity factors versus relative length (l/L) of branched crack.

100
0.0

0.2

0.4

0.6

22

q0

x2

x1

 N

, 
,

l/L = 0.001

k/
(π

L)
1/

2 /
22σ

θΙ = π/6 θΙΙ = 2π/3
∆KI ∆KII

ω = π/3

σ

22σ

Fig. 5. Variations of stress intensity factors versus partition points of N.

930 R. Li, G.A. Kardomateas / International Journal of Solids and Structures 43 (2006) 913–942



R. Li, G.A. Kardomateas / International Journal of Solids and Structures 43 (2006) 913–942 931
(KII) stress intensity factors around the branched crack tip as functions of L/l. The number of partition
points in (94) and (95) is n = 120. Results of two cases were plotted, one for the assumed branching angle
x = p/3 and the other for x = p/4. It can be seen that when l/L > 0.1, both values of KI and KII converge
very well. When l/L > 0.00125, these values almost do not vary with the change of l/L. Therefore, the
behavior of a branched crack with l/L = 0.001 can be considered as the behavior at the onset of interface
crack branching. Usually, the onset of crack branching is of most interest in the study of interface crack
problems. Fig. 5 gives the variation of KI and KII versus the change of partition points n. The value l/
L = 0.001 was used here. To obtain these results, Dn was set to be 10 and DK is defined as the difference
of the K evaluated at n = i + 10 and n = i (i > = 20), respectively. It can be seen that DK! 0 as
n ! 1. This means KI and KII converge with increasing n. The plotting shows that one could get a good
approximation by using n = 60 in the computation if one�s computer memory is not big enough and the
choice of partition points n = 120 in this paper would be very reasonable. Of course, if the computer mem-
ory permits, one can set n to be a big number. Thus, the infinitesimal crack branch was assumed to be
l/L = 0.001 and the n was taken to be 120 in current paper.

6.1. Interface delamination branching for a general dissimilar anisotropic bi-media

As described in the above convergent study, the material properties (thermal and mechanical) of the
upper and lower medium for this general bi-material structure are quite different. This type of bi-media
can often be found in applications in many areas such as coating, electronic package, bio-mechanics struc-
ture, aerospace and nuclear power generator structure, etc. The components of a structure in these appli-
cations often have different thermal and mechanical properties and can operate under a severe temperature
gradient. Therefore, the study of thermo-elastic interface crack branching propagation behavior is not only
of theoretical importance but also of practical significance.

Fig. 6 and 7 show the mode I and mode II stress intensity factors and energy release rates versus the
branching angle under different applied loading conditions. The orientation for the components of this
bi-material media is hI = p/6 and hII = �2p/3. Three sets of results are plotted for three loading condi-
tions: solid line for combined loading of unit r22 (1 N/m2) and q0 (in W/m2); dash-dot line for only unit
r22 applied; dash line for only unit q0 applied. Several interesting observations can be made from the re-
sults in these two figures. In Fig. 6, the branching angle at which the KI attains its maximum under com-
bined loading is different from the corresponding angle under pure mechanical loading or thermal loading.
For combined loading, x = 51.44� and KImax = 3.3394, while for pure mechanical loading, x = 43.45� and
KImax = 1.5507 and for pure thermal loading, x = 57.4665� and KImax = 1.8198. If the bi-material media
originally under pure mechanical loading, then the KImax would increase by 115.3% due to additional ther-
mal loading; or on the other hand, if the bi-material media originally under pure thermal loading, the KI-

max then would increase by 83.5% with the additional mechanical loading applied. The results for energy

release rate G are plotted in Fig. 7 and they share a similar tendency as those for KI in Fig. 6. The angles
at which the Gs reach their maximum values are also different: for combined loading, when x = 40.94�,
Gmax = 9.7478; for pure mechanical loading, x = 34.78�, Gmax = 2.3294 and for pure thermal loading
x = 45.23�, Gmax = 2.7123. If one assumes that original loading is purely mechanical as in many engineer-
ing construction, then Gmax would increase by 318.5% due to the additional thermal loading. One can see
that although the energy release rate is a scalar value, its value under combined loading is not the sum-
mation of the values from the purely applied mechanical loading and purely thermal loading, in fact it
is much bigger than the summation. The difference of these two values reflects the fact that a huge inter-
action energy would be produced once a heat flux added onto a mechanically loaded structure which
includes defects. This observation can have significant implication in practical structure design. For exam-
ple, according to the K-based criterion, interface cracks in a structure, usually operating in a constant tem-
perature environment, would not grow from a sudden fire since the increased value of K may still fall into
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the design tolerance. However, there would be a strong interaction energy induced by the heat flux accord-
ing to the energy release rate criterion, hence cracks in the structure may actually branch and grow
quickly. Therefore, for the safety of the structure, a damage tolerance design should be based on a G-based
criterion.

There are also some other interesting observations. In Fig. 6, one can see that when KI reaches its max-
imum, the KII does not equal to zero for each loading condition. This observation differs from that in
monolithic isotropic medium or dissimilar quasi-bi-material media (which defined in next section) under
pure mechanical loading, in which KI is maximum when at the same time KII = 0. Two aspects may con-
tribute to this difference: c 5 0 and/or the thermal loading effects. The above observations could suggest
that the G-based criteria may be more suitable than the usual K-based criteria to predict thermo-elastic
interface crack branching propagation for dissimilar anisotropic bi-material media.

6.2. Interface delamination branching in a quasi-bi-material media

For most dissimilar anisotropic bi-material media, their bi-material parameter c usually is not zero.
However, there is a set of bi-media whose constituents can be dissimilar but its bi-material parameter
c = 0. We define this type of bi-media as �quasi-bi-material media�. Many engineering composites materials
belong to this category. One way to produce such a composites is using one raw material and rotating the
material axis with respect to the structure axis by different angles for the upper and lower components. It
can be easily proven that the c = 0 for this type of dissimilar bi-material media (Appendix D). Because of its
special character the quasi-bi-material media is found to have some interesting behavior regarding the phe-
nomenon of interface delamination branching.

Let us first consider a special loading condition case: pure mechanical loading [no thermal loading by
setting q0 = 0.0 in Eqs. (94) and (95)]. The �basic� material elastic constants are similar to those in Miller
and Stock (1989), i.e. moduli in GPa: E11 = 4.89 E22 = E33 = 0.407, G21 = 0.731; Poisson�s ratios:
m21 = m23 = m31 = 0.02. This raw material was used as upper medium. The lower medium was also made
from this raw material but with the principal material axis being rotated hII = �p/6 with respect to the
(x1,x2,x3) coordinate system. The bi-material parameter c equals zero, as proven in Appendix D.

The results of Mode I and Mode II stress intensity factors and energy release rate versus the branching
angles are plotted in Figs. 8 and 9. Fig. 8 shows that the angles at which maximum values of KI are attained
(x = 21.86� and x = �11.83� for upper and lower medium, respectively) are the same angles where KII

approaches zero and there is a discontinuity in the stress intensity factors across the x = 0� angle. These
two observations are in good agreement with those in literature such as in Miller and Stock (1989), and
this provides a kind of validation for the numerical scheme in the present paper. One remark: the materials
used in this paper are similar to the ones used by Miller and Stock (1989), but not exactly the same; there
are still some differences, such as the mij being different. Therefore, some disagreements in the comparison
are expected.

One can easily see that in Fig. 9 the angles at which the maximum energy release rate occurs (x = 10.9�
and x = �22.5� for upper and lower medium, respectively) are different from the angles for maximum KI. It
seems that there are two possible angles for the interface crack branching growth, one is �11.83� which is
based on maximum KI (or zero KII), the other one is �22.5�, which is based on maximum energy release
rate. However, we often observe in experiments (La Saponara and Kardomateas, 2001) that crack branch-
ing usually tends to grow parallel to or along the fibers� orientation (which is 0� for the upper medium or
�30� for the lower medium in this case) in fiber-reinforced composite materials and this growth usually
happens in weaker (more compliant) media as is always seen in sandwich debonding tests, i.e. debonding
often branches into the core, almost never into the face sheet (La Saponara and Kardomateas, 2001). Here,
the angle x = �22.5� is very close to the orientation (hII = �30�) of the stiffer material axis of the weaker
(or more compliant) component of this bi-material media. Therefore, these observations lead us to conclude
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that a maximum G-based criterion than a K-based criterion may be more accurate in predicting the inter-
face crack branching for dissimilar anisotropic bi-material media. It should be noted at this point that the
branching depends on both the max G0 (the energy release rate if the interface crack) and the toughness of
the interface/body. But the comparison made in this paper attempts to offer tentative guidelines that could
help in the establishment of a correct failure criterion.

The influence of thermal constants� mismatches on the branching behavior of an interface delamination
can be reflected by the difference between orientation angles hI and hII. The following example serves as
such purpose. Figs. 10 and 11, respectively, show the results of Mode I and Mode II stress intensity factors
and energy release rate versus the branching angles for three different bi-material media, which are formu-
lated by letting hI = 0.0 while hII = �p/6, hII = �p/4 and hII = �p/3. Besides some observations similar to
those in Figs. 6–9, several other observations can be made from Figs. 10 and 11. It can be seen that there is
a discontinuity of the stress intensity factors and the energy release rate when the branching angle x
approaches 0	, respectively. This discontinuity for KI and KII was also shown on Fig. 8 and in the results
of Miller and Stock (1989). But for pure mechanical loading there is no such discontinuity for the energy
release rate as plotted in Fig. 9. This discontinuity on energy release rate in Fig. 11 shows another effect of
thermal loading. Negative KI (contact of the crack faces around the crack tip) (Li and Kardomateas, 2005)
appears for the bi-material of hI = 0.0, hII = �p/4 when the branching angle x > 13.75� or
�21.25� < x < 0� (the ��� sign means the interface delamination possibly branches into the lower medium),
an observation being consist with the one in (Li and Kardomateas, 2005). Some other interesting results can
also be observed in the plot of energy release rate. It can also be seen from Fig. 11 that the interface tends to
branch into the lower medium, a result being consist with the observation in Fig. 7. But the corresponding
maximum energy release rate, which is Gmax = 21.03 for the bi-material media with hII = �p/6,
Gmax = 13.12 for the bi-material media with hII = �p/4, Gmax = 138.15 for the bi-material media with
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hII = �p/6, does not simply increase as the orientation angle hII increases. In fact, Gmax reaches its mini-
mum value when hII = �p/4. This observation may indicate that hII = �p/4 could be the optimal orienta-
tion angle between the upper and lower medium for this bi-material media. Therefore, the results may be
useful in optimal design for damage tolerance.
7. Conclusion

In this paper, a closed form solution is obtained for the thermo-elastic interaction between an interface
crack and a dislocations (the thermal vortex and mechanical dislocation) in terms of matrix notation. The
thermo-elastic interface crack/delamination branching phenomenon for dissimilar anisotropic bi-material
media was subsequently investigated in detail. The influences of thermal loading on the onset of interface
crack branching is addressed. The results of various cases are consistent with the observed fracture phe-
nomena in composites and sandwich coupons with debonds. The observations in this study may suggest
the following conclusions: (1). For general dissimilar anisotropic bi-material media, there usually exists a
large interaction energy between the thermal loading and the mechanical loading for a structure with
defects. This may have consequences, for example, in promoting failure when an imperfect bi-material
structure is being exposed to a sudden fire; (2). G-based criterion may give more reasonable prediction than
a K-based criterion for interface delamination branching angles of dissimilar anisotropic bi-media; (3). For
some anisotropic bi-material media, negative KI (overlapping of the delamination faces around the crack
tip) is possible under certain loading conditions due to the thermal effects; (4). There exist an optimal ori-
entation angle difference between the two constituents of a bi-material media. This optimal difference could
minimize the value of maximum energy release rate. Therefore, the results in current work may also provide
some useful guideline for damage tolerance engineering design.
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Appendix A. Summary of some basic thermo-anisotropic elasticity formulas

For a plane system, the non-trivial displacement u = [u1, u2, u3]
T (with corresponding stress functions

u = [u1, u2, u3]
T) and temperature distribution T(x1,x2) which satisfy equations of equilibrium and heat

conduction (with corresponding heat flux hi, i = 1,2) are:
u ¼ A/ðzaÞ þ A/ðzaÞ þ CvðzsÞ þ C vðzsÞ; u ¼ B/ðzaÞ þ B/ðzaÞ þDvðzsÞ þD vðzsÞ;
T ðx1; x2Þ ¼ v0ðzsÞ þ v0ðzsÞ; hi ¼ �ðki1 þ ski2Þv00ðzsÞ � ðki1 þ ski2Þv00ðzsÞ;

ð100Þ
where A = [a1, a2, a3] and B = [b1, b2, b3] are 3 · 3 matrices which satisfy the identity:
BT AT

B
T

A
T












� A A

B B












 ¼ I 0

0 I





 



; ð101Þ
C and D are 3 · 1 vectors; /(za) is a function vector and v(zs) is a scalar function; za = x1 + pax2 (a = 1,2,3)
and zs = x1 + sx2; the overbar ð Þ denotes the conjugate of a complex variable, the prime 0 denotes differ-
entiation with respect to za or zs; ki1, ki2 (i = 1,2) are coefficients of heat conductivity; the constant s is
the root with positive imaginary part of the equation
k22s2 þ 2k12sþ k11 ¼ 0; ð102Þ

the pa, a, b, c and d are constants which satisfy the following equations
N
a

b





 



 ¼ p
a

b





 



; N ¼
N 1 N 2

N 3 NT
1





 



; N
c

d





 



 ¼ s
c

d





 



� 0 N 2

I NT
1





 



 b1

b2





 



; ðb1Þi ¼ bi1; ðb2Þi ¼ bi2 ð103Þ
in which, N1 = �T�1 RT, N2 = T�1, N3 = RT�1RT � Q; the superscript �T� stands for the transpose of a
matrix and
Qik ¼ ci1k1; Rik ¼ ci1k2; T ik ¼ ci2k2; i; k ¼ 1; 2; 3. ð104Þ

The function vector /(za) takes the form
/ðzaÞ ¼� fðzaÞ � q; � fðzaÞ �¼ diag½fðz1Þ; fðz2Þ; fðz3Þ�; ð105Þ

where f(za) and q are, respectively, the unknown functions and constants to be determined for a given prob-
lem and the � � stands for a diagonal matrix. The stresses can be written in term of stress functions as:
ri1 ¼ � oui

ox2
¼ �ui;2; ri2 ¼

oui

ox1
¼ ui;1 ¼ u0

i; i ¼ 1; 2; 3; ð106Þ
where the relationship
oui

ox1
¼ dui

dz
¼ u0

i is used in (106)2.

If we let k ¼ k22ðs� sÞ=2i, then k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11k22 � k212

q
and
h1 ¼ iksv00ðzsÞ � iksv00ðzsÞ; h2 ¼ �ikv00ðzsÞ þ ikv00ðzsÞ ð107Þ

Here, three useful matrices are defined as
H ¼ 2iAAT; L ¼ �2iBBT; S ¼ ið2ABT � IÞ; ð108Þ
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where I = diag[1, 1, 1] is a unit matrix. It can be shown that H and L are symmetric and positive definite
and SH, LS, H�1S, S, SL�1 are anti-symmetric and the following relations can be
M ¼ �iBA�1 ¼ H�1ðI þ iSÞ ¼ ðI � iSTÞH�1;

M�1 ¼ iAB�1 ¼ L�1ðI þ iSTÞ ¼ ðI � iSÞL�1.
ð109Þ
Appendix B. Contour integral for the interaction function

From Eqs. (34) and (44), the interaction stress functions read as
U0ðzÞ ¼ 1

2p
X ðzÞ

Z b

a

X�1
þ ðx1Þ
x1 � z

N�1½p0 þ p�1x1 þ p�2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðb� x1Þ

p
�dx1 þ Q1ðzÞ

� �
; ð110Þ
where
p�1 ¼ ðq1 þ q2Þh�0; p�2 ¼ ðq2 � q1Þh�0; h�0 ¼ �i
kI þ kII
2kIkII

h0. ð111Þ
By using contour integral one can get:
J 1 

X ðzÞ
2p

Z b

a

X�1
þ ðx1Þ
x1 � z

N�1p0 dx1 ¼ vfI � xðzÞDðz; �Þ½NðzÞ þP1�gv�1ðN þ NÞ�1ðip0Þ;

J 2 

X ðzÞ
2p

Z b

a

x1X�1
þ ðx1Þ

x1 � z
N�1p�1 dx1

¼ vfNðzÞ � xðzÞDðz; �Þ½Nðz2Þ þP1NðzÞ �P2�gv�1ðN þ NÞ�1ðip�1Þ;

J 3 

X ðzÞ
2p

Z b

a

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � aÞðb� x1Þ

p
X�1

þ ðx1Þ
x1 � z

N�1p�2 dx1

¼ vfx�1ðzÞ � xðzÞDðz; �Þ½Nðz2Þ �P3NðzÞ þP4gv�1ðN þ NÞ�1ðip�2Þ;

J 4 

X ðzÞ
2p

Q1ðzÞ ¼ vdiag 0; 0;�ða� bÞ2

8

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p" #
v�1ðN þ NÞ�1iðp�1 þ p�2Þ

þ vdiag 0; 0;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p" #

½P2v�1ðN þ NÞ�1ðip�1Þ þ ðP2
1 þP1P3 þP4Þv�1ðN þ NÞ�1ðip�2Þ�

þ v
ða� bÞ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 � aÞðz1 � bÞ

p ;
ða� bÞ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 � aÞðz2 � bÞ

p ;
ða� bÞ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz3 � aÞðz3 � bÞ

p" #
v�1ðN þ NÞ�1ðip�2Þ

¼ vdiag 0; 0;
ðb� aÞ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p" #
v�1ðN þ NÞ�1ip�1

þ vdiag
ðb� aÞ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 � aÞðz1 � bÞ

p ;
ðb� aÞ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 � aÞðz2 � bÞ

p ;
�ðb� aÞ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz3 � aÞðz3 � bÞ

p" #
v�1ðN þ NÞ�1ip�2

¼ vxðzÞP5v�1ðN þ NÞ�1ðip�1Þ þ vxðzÞP6v�1ðN þ NÞ�1ðip�2Þ;
ð112Þ
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where
NðzÞ ¼ diag½z1; z2; z3�;

P1 ¼ diag ðb� aÞi�� aþ b
2

; ðb� aÞð�i�Þ� aþ b
2

;�aþ b
2

� �
;

P2 ¼ diag
b� a
2

� �2

ð1þ 4�2Þ; b� a
2

� �2

ð1þ 4�2Þ; b� a
2

� �2
" #

;

P3 ¼ diag ðaþ bÞþ ðb� aÞi�; ðaþ bÞþ ðb� aÞð�i�Þ; ðaþ bÞ½ �;

P4 ¼ diag abþ b2 � a2

2
i��ð1þ 4�2Þ b� a

2

� �2

;abþ b2 � a2

2
ð�i�Þ� ð1þ 4�2Þ b� a

2

� �2

;ab� b� a
2

� �2
" #

;

P5 ¼ diag 0;0;
ðb� aÞ2

8

" #
; P6 ¼ diag 1=8;1=8;�1=2½ �;

ð113Þ
then
U0ðzÞ ¼ J 1 þ J 2 þ J 3 þ J 4. ð114Þ
Integration of Eq. (110) yields
UðzÞ ¼ v½NðzÞ � x�1ðzÞDðz; �Þ�v�1ðN þ NÞ�1ðip0Þ þ v½Nðz2Þ � x�1Dðz; �ÞNðzÞ�v�1ðN þ NÞ�1ðip�1Þ

� v½x�1Dðz; �ÞðNðzÞ �P1 �P3�v�1ðN þ NÞ�1ðip�2Þ � vY 1ðz; �Þv�1ðN þ NÞ�1iðp�1 þ p�2Þ

� vY 2ðz; �Þ½P2v�1ðN þ NÞ�1ðip�1Þ þ ðP2
1 þP1P3 þP4Þv�1ðN þ NÞ�1ðip�2Þ�

þ vY 3ðzÞv�1ðN þ NÞ�1ðip�2Þ; ð115Þ
where
Y 1ðz; �Þ ¼ diag

�
ða� bÞ0.5þi�

1.5� i�
ðz� aÞ1.5�i�

2F 1 1.5� i�;�0.5� i�; 2.5� i�;
z� a
b� a

� �
;

ða� bÞ0.5�i�

�1.5� i�
ðz� aÞ1.5þi�

2F 1 1.5þ i�;�0.5þ i�; 2.5þ i�;
z� a
b� a

� �
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p

ðz� aþ z� bÞ=4
�
;

Y 2ðz; �Þ ¼ diag
ða� bÞ�0.5þi�

0.5� i�
ðz� aÞ0.5�i�

2F 1 0.5� i�; 0.5� i�; 1.5� i�;
z� a
b� a

� �
;

"
ða� bÞ�0.5�i�

�0.5� i�
ðz� aÞ0.5þi�

2F 1 0.5þ i�; 0.5þ i�; 1.5þ i�;
z� a
b� a

� �
; 0

#
;

Y 3ðzaÞ ¼ diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 � aÞðz1 � bÞ

p
ðz1 � aþ z1 � bÞ=4;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 � aÞðz2 � bÞ

p
ðz2 � aþ z2 � bÞ=4;

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz3 � aÞðz3 � bÞ

p
ðz3 � aþ z3 � bÞ=4

i
;

ð116Þ
in which, 2F1(ar;cs;z) is a generalized hypergeometric function with a1 = 0.5 � i�, a2 = 0.5 � i�,
c1 = 1.5 � i�, z ¼ z�a

b�a (Lebedev, 1972).
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Appendix C. Solution to the thermal-dislocation of bi-media

From the boundary condition (65)1,2 along the interface, one can obtain
Re
q0s

x1 � zs0
þ q1s
x1 � zs0

� �
¼ Re

q2s
x1 � zs0

� �
;

kIIm
q0s

ðx1 � zs0Þ2
þ q1s
ðx1 � zs0Þ2

" #
¼ kIIIm

q2s
ðx1 � zs0Þ2

" #
.

ð117Þ
Differentiation of (117)1 with respect to x1 gives
Re
q0s

ðx1 � zs0Þ2
þ q1s
ðx1 � zs0Þ2

" #
¼ Re

q2s
ðx1 � zs0Þ2

" #
. ð118Þ
Solving Eqs. (117)2 and (118) leads to
q1s ¼
kI � kII
kI þ kII

q0s; q2s ¼
2kI

kI þ kII
q0s. ð119Þ
The boundary condition (65)3,4 along the interface yields:
X3
1

f½AI logðx1 � zd0kÞIkqd0 þ AI logðx1 � zd0kÞIkqd0� þ ½AI logðx1 � zd0kÞq1k þ AI logðx1 � zd0kÞq1k�g

þ ½AI logðx1 � zs0Þq1ds þ AI logðx1 � zs0Þq1ds� þ ½CI logðx1 � zs0Þq0s þ CI logðx1 � zs0Þq0s�

þ ½CI logðx1 � zs0Þq1s þ CI logðx1 � zs0Þq1s� ¼
X3
1

½AII logðx1 � zd0kÞq2k þ AII logðx1 � zd0kÞq2k�

þ ½AII logðx1 � zs0Þq2ds þ AII logðx1 � zs0Þq2ds� þ ½CII logðx1 � zs0Þq2s þ CII logðx1 � zs0Þq2s�;X3
1

f½BI logðx1 � zd0kÞIkqd0 þ BI logðx1 � zd0kÞIkqd0� þ ½BI logðx1 � zd0kÞq1k þ BI logðx1 � zd0kÞq1k�g

þ ½BI logðx1 � zs0Þq1ds þ BI logðx1 � zs0Þq1ds� þ ½DI logðx1 � zs0Þq0s þ DI logðx1 � zs0Þq0s�

þ ½DI logðx1 � zs0Þq1s þ DI logðx1 � zs0Þq1s� ¼
X3
1

½BII logðx1 � zd0kÞq2k þ BII logðx1 � zd0kÞq2k�

þ ½BII logðx1 � zs0Þq2ds þ BII logðx1 � zs0Þq2ds� þ ½DII logðx1 � zs0Þq2s þ DII logðx1 � zs0Þq2s�.
ð120Þ
Following two sets of equations can be derived by grouping the coefficients of terms log(x1 � zd0k), and
log(x1 � zs0) in the above equation:
� AIq1k þ AIIq2k ¼ AIIkqd0;

� BIq1k þ BIIq2k ¼ BIIkqd0
ð121Þ
and
AIq1ds � AIIq2ds ¼ CIIq2s � CIq1s � CIq0s;

BIq1ds � BIIq2ds ¼ DIIq2s � DIq1s � DIq0s.
ð122Þ
Eqs. (121) and (122), respectively, give
BIq1k ¼ N ½�N�1 þ 2L�1
1 �BIIkqd0; BIIq2k ¼ 2NL�1

1 BIIkqd0 ð123Þ
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and
BIq1ds ¼ N ½M�1

II Dþ iC�q0s; BIIq2ds ¼ �N ½M�1

I Dþ iC�q0s; ð124Þ

where
C ¼ 2kI
kI þ kII

CII �
kI � kII
kI þ kII

CI � CI; D ¼ 2kI
kI þ kII

DII �
kI � kII
kI þ kII

DI � DI. ð125Þ
Appendix D. Proof c = 0 for ’’quasi-bi-materials’’ (same ‘‘basic’’ material but different fiber orientations for

the two phases)

It is easily to show SL�1 is antisymmetric. Actually, from the definition of matrices S, L and using Eq.
(109)
SL�1 ¼ ið2ABT � IÞð�2iBBTÞ�1 ¼ B�TB�1

2
� AB�1 ¼ B�TB�1

2
� L�1ðST � iIÞ ¼ �L�1ST

¼ �½SL�1�T. ð126Þ
It follows that W = S1L1 � S2L2 is antisymmetric.
If x3 is an axis of material symmetry, then the third components of the first and second vector in matrix

A and B are zero, so are the first and second component of the third vector. Therefore, the matrix SL�1 can
only has the following form
SL�1 ¼
0 b 0

�b 0 0

0 0 d
















. ð127Þ
Hence,
S2L�1
2 ¼ XTS1X½XTL�1

1 X��1 ¼ XTS1L�1
1 X¼

0 b½cosðxÞ2 þ sinðxÞ2� 0

�b½cosðxÞ2 þ sinðxÞ2� 0 0

0 0 d
















¼ S1L�1

1 .

ð128Þ

This shows that W is a null matrix, then it follows that the bi-material parameter � = 0.0 by definition ofW.
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